期刊文献+

应用小指数多项式的KPCA+零空间人脸识别 被引量:1

Face Recognition Combining Null Space Approach and Kernel PCA Including Fractional Power Polynomial Models
下载PDF
导出
摘要 利用小指数多项式核主分量分析(KPCA)提取人脸样本的非线性特征,提高对光照、姿态及面部表情变化的鲁棒性,构造训练样本的类内散布矩阵零空间,在此零空间内找到令类间离散度最大的投影方向,往此方向投影得到人脸样本的最优分类特征矢量。实验结果表明;该方法的识别率和对光照、姿态及面部表情变化的鲁棒性比Fisher脸方法有显著提高。 This paper presents a novel KPCA+Null Space method by integrating the kernel PCA method and the null space of the within-class scatter matrix. The kernel PCA method which extends to include fractional power polynomial models first derives nonlinear features of face samples, then this paper constructs the null space of the within-class scatter matrix, and calculates the optimal discriminating vectors by maximizing the between-class distribution, after the projection of the samples onto the optimal discriminating vectors, it can obtain the optimal discriminating feature vectors. The test results show that the KPCA+Null Space method is superior to Fisher lace method in terms of recognition accuracy and stability to the variations between the images of the same face due to illumination, expression and viewing direction.
出处 《计算机工程》 EI CAS CSCD 北大核心 2006年第22期203-205,共3页 Computer Engineering
关键词 人脸识别 小指数多项式 核主分量分析 零空间 Face recognition Fractional power polynomial models Kernel principal component analysis(KPCA) Null space
  • 相关文献

参考文献5

  • 1Swets D L, Weng J. Using Discriminant Eigenfeatures for Image Retrieval[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1996, 18(8): 831 -836.
  • 2Kirn I K, Jung K, Kim H J, Face Recognition Using Kernel Principal Componenl Analysis[J]. IEEE Signal Processing Letters, 2002, 9(2).
  • 3Liu Chengjun. Gabor-based Kernel PCA with Fractional Power Polynomial Models for Face Recognition[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2004, 25(5).
  • 4Haykin S. Neural Networks: A Comprehensive Foundation(2^nd Edition)[M]. Pearson Press, 1999.
  • 5Scholkopl B, Smota A, Müller K R. Nonlinear Component Analysisas a Kernel Eigenvalue Problem[J]. Neural Computation, 1998, 10(5):1299- 1319.

同被引文献9

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部