期刊文献+

索-梁组合结构中拉索的非线性响应 被引量:20

NON-LINEAR RESPONSE OF CABLES IN CABLE-STAYED BEAM STRUCTURE
下载PDF
导出
摘要 研究由桥面振动引起的斜拉索参数共振和亚谐波共振问题。首先,建立索-梁组合结构力学模型,推导了考虑拉索初始垂度的索-梁组合结构非线性动力学方程。然后利用多尺度方法研究斜拉索的参数共振和亚谐波共振,并对稳态解的稳定性进行了分析。最后对斜拉索参数共振和亚谐波共振进行数值模拟,得到不同阻尼及不同初始条件下的拉索时间历程曲线。数值模拟结果表明斜拉索振幅与阻尼有关,但不受拉索初始条件影响。 The parametric and subharmonic resonances of stay cables excited by the vibration of deck are investigated. The mechanical model of cable-stayed beam is firstly established. The nonlinear dynamical equation of cable-stayed beam is then obtained, in which the nonlinearity is caused by the initial sag. The method of multiple scales is applied to the differential governing equations to analyze the parametric and subharmonic resonances of stay cables. The stability of the steady solutions is also investigated. Finally, numerical simulation is used to investigate the parametric and subharmonic resonances of stay cables. The time histories of stay cables under different dampings and initial conditions are obtained. The results of numerical simulation show that the amplitude of cables is related to the damping but not related to the initial condition.
出处 《工程力学》 EI CSCD 北大核心 2006年第11期153-158,共6页 Engineering Mechanics
基金 教育部跨世纪人才基金(教技函2002(48)) 国家自然科学基金资助项目(10272041)
关键词 索-梁组合结构 参数共振 亚谐波共振 数值模拟 cable cable-stayed beam parametric resonance subharmonic resonance numerical simulation
  • 相关文献

参考文献9

二级参考文献31

  • 1赵跃宇.大跨径斜拉桥非线性动力学的模型与理论研究[M].长沙:湖南大学土木工程学院,2000..
  • 2王连华.斜拉索的非线性动力学分析[D].长沙:湖南大学,2001.
  • 3汪至刚.大跨度斜拉桥拉索的振动与控制[D].杭 州:浙江大学,2000.
  • 4A H 奈克 D T 穆克.非线性振动[M].北京:高等教育出版社,1996..
  • 5Namsimha R. Non-linear vibration of an elastic string [ J].Journal of Sound and Vibration, 1968 (8), 134 - 136.
  • 6Nayfeh A H, Mook D T. Nonlinear Oscillations [ M]. New York: John Wiley & Sons Inc. 1979.
  • 7Perkins N C. Modal interactions in the non-linear response of elastic cables under parametric/external excitation [J]. International Journal of Non-linear Mechanics, 1992 (22), 233-25O.
  • 8Lee C L, Perkins N C. Three-dimensional oscillations of suspended cables involving simultaneous internal reaonanc [J].Non-linear Dynamics 1995 (8), 45 - 63.
  • 9Benedetini F, Resa G, Alasgio R. Non-linear oscillations of a four-degree--of-freedom modal of a suspended cable under multiple internal resonance conditions [ J]. Journal of Sound and Vibration. 1995 (182), 755 - 798.
  • 10Benedetini F, Rega G, Alaggio G. Experimental investingation of the non-linear response of a hanging cable [J]. Part I:loca analysis, Non--Linear Dyn. 1997 (14), 89- 96.

共引文献149

同被引文献229

引证文献20

二级引证文献120

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部