摘要
通过对标准微粒群算法(PSO)改进,采用动态罚函数的方法,提出了一种求解非线性约束优化问题的新算法.由于使用了一种新的适应度函数,该算法具有很强的全局寻优能力.
This Paper presents a new evolutionary algorithm for solving nonlinear constrained optimization problems based on particle swarm optimizer(PSO). Dynamic penalty function is adopted in this algorithm to transform the constrained optimization problems into unconstrained optimization problems. Because a new fitness function which is able to get global minimum has been proposed, the new algorithm has shown its powerful ability for solving nonlinear constrained optimization problems in the benchmark tests.
出处
《哈尔滨工业大学学报》
EI
CAS
CSCD
北大核心
2006年第10期1716-1718,共3页
Journal of Harbin Institute of Technology
基金
国家自然科学基金资助项目(60374031)
关键词
全局寻优
微粒群
动态罚函数
适应度函数
非线性约束优化
global optimization
particle swarm optimizer
dynamic penalty function
fitness function
non-linear constrained optimization