期刊文献+

基于人工神经网络的高压水射流混凝土构件表面处理模型 被引量:2

Neural Network Parametric Model of High-Pressured Water-Jet in Surface Preparation
下载PDF
导出
摘要 目的应用高压水射流进行混凝土构件表面处理前确定机械的初始参数,实现对处理深度全面合理的控制.方法用AJP-E25135型高压泵,RG-2002HNDF型、口径为0.25 mm七喷嘴旋转喷枪,对36组不同的初始参数、同批制作的砾石混凝土试块进行了高压水射流表面处理试验,并运用人工神经网络技术,对试验数据进行理论分析.结果建立了压力、靶距、口径、S/A(砂率)与处理深度关系的预测模型并把模型的预测结果与实验结果进行了比较,平均相对误差为0.000 5.结论模型能够满足工程实际需要,可用于混凝土构件表面处理深度的估计与分析,以及特定处理深度条件下初始参数的预测.并可广泛应用于高压水表面处理深度模型的参数优化选择,智能化控制等领域. A parametric model of high-pressured water-let cutting depth with water pressure, standoff-distance, caliber, S/A was established, using neural network analysis of experimental results. Using AJP- E25135 high-pressure pump, and RG-2002HNDF with 0.25 mm caliber rotating spraying gun carrying out the experiment of high-pressured water-jet in surface preparation. The experiment is to sprinkle water on 36 gravel concretes which are made at the same time. Then the article analyses the data by using the technology of artificial neural network, The article sets up the relationship among pressure, target distance, caliber, S/A and cutting depth, then compares the forecasting result with the experimental result, with the average error 0.000 5. The model meets the practical demand of project. It can be used to evaluate and analyze surface cutting depth of concrete, it can also be used to forecast initial parameter of a given cutting depth. So this model can be widely used in the fields of parametric model of high-pressured water-jet in surface preparation and intellectual control, etc.
出处 《沈阳建筑大学学报(自然科学版)》 EI CAS 2006年第6期1047-1051,共5页 Journal of Shenyang Jianzhu University:Natural Science
基金 建设部科技攻关项目(05-k4-16) 辽宁省教育厅科技基金(2004D252)
关键词 高压水射流 神经网络 处理深度 靶距 high-pressured water-jet neural network cutting depth target distance
  • 相关文献

参考文献9

二级参考文献31

  • 1虞和济.机械设备故障诊断的人工神经网络识别法[J].机械强度,1995,17(2):48-54. 被引量:15
  • 2孙家俊.水射流切割技术[M].徐州:中国矿业大学出版社,1992..
  • 3[1]Hashish M. A modeling study of metal cutting with abrasive wa terjets[J ]. Transactions of the ASME, Journal of Manufacturing Science and Engineering, 1984,106 (1): 88~ 100.
  • 4[2]Hashish,M. Characteristics of surface machind with abrasive-waterjets[J ] ,ASME Journal of Manufacturing Science and Engineering. 1991,113:354~362.
  • 5[3]Zeng J and Kim T J. Parameter prediction and cost analysis in abrasive waterjet cutting operations [A]. Proceedings of the 7th American Water Jet Conference[ C]. WJTA, St Louis, MO, USA. 1993:175~190.
  • 6[4]Nanrduri M, Kim T J, et al. Wear patterns in abrasive waterjet nozzles[A]. Proceedings of the 13th International Conference on Jetting Technology[C]. BHR, Sardinia, Italy, 1996:27~43.
  • 7[5]Siores E,Chen L,et al. Improving sin-face finish generated by theabrasive waterjet process[A]. International Symposium on Ad vances in abrasive Technology [ C]. Sydney, Australia, 1997:187 ~ 191.
  • 8[6]Kovacevic R, Mohan R and Zhang Y M. Cutting force dynamics as a tool for surface profile monitoring in AWJ[J]. ASME Journal of Engineering for Industry. 1995,117:340~350.
  • 9[7]Chen L, Siores E and Patel K. Improving the cut surface qualities using different controlled nozzle oscillation techniques[J ]. Interna tional Journal of Machchine Tools & Manufacture, 2002,42: 712 ~ 722.
  • 10[8]Zeng J. Olsen J and Olsen C. The Abrasive wtrjet as a precision metal cutting tool[A]. Proceedings of Proceedings of the 10th American Water Jet Conference [ C]. WJTA, Houston, Texas, USA. 1999,65.

共引文献107

同被引文献6

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部