期刊文献+

NA列几何加权级数乘积和的重对数律

A Law of the Iterated Logarithm for the Product of Geometric Series of NA Sequences
下载PDF
导出
摘要 为了进一步研究NA列,对同分布NA随机变量列,在期望为0,方差为1的条件下,建立了几何加权级数的乘积和在β趋于1时的重对数律。 Considering the product of geometric series, where negatively associated sequences are identically distributed with mean zero and variance 1 , a law of iterated logarithm obtained when β converges to one.
作者 周海阳
出处 《淮阴工学院学报》 CAS 2006年第5期4-6,9,共4页 Journal of Huaiyin Institute of Technology
关键词 NA列 几何加权级数的乘积和 重对数律 negatively associated sequences the product of geometric series iterated logarithm
  • 相关文献

参考文献11

二级参考文献34

  • 1苏淳.NA序列的一个Hsu-Robbins型定理[J].科学通报,1996,41(2):106-110. 被引量:20
  • 2苏淳,赵林城,王岳宝.NA序列的矩不等式与弱收敛[J].中国科学(A辑),1996,26(12):1091-1099. 被引量:88
  • 3Egorov V A.Hartman-Wintner重对数律的推广[J].列宁格勒大学学报(俄),1971,7:22-28.
  • 4[1]Hsu,P.L.,Robbins.,Complete convergence and the strong law of large numbers.Proc-Nat.Acad.Sci.USA,1947,33,25-31.
  • 5[2]Erdos,P.,On a theroem of Hsu and Robbins.Ann.Math.Statist.1949,20,286-291.
  • 6[3]Erdos,P.,Remark on my paper On a theorem of Hsu and Robbins.Ann.Math.Statist.1950,21,138.
  • 7[4]Spataru,A.,Precise asymptotics in Spitzer's law of large numbers.J.Theor.Probab.1999,12,811-819.
  • 8[5]Baum,L.E.,Katz,M.,Convergence rates in the law of large numbers.Trans.Amer.Math.Soc.1965,120,108-123.
  • 9[6]Heyde,C.C.,Asuplement to the strong law of large numbers.J.Appl.Probab.1975,12,173-175.
  • 10[7]Chen,R.,Aremark on the tail probability of a distribution.J.Multivariate Anal.1978,8,328-333.

共引文献135

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部