期刊文献+

基于波谱知识库的MODIS叶面积指数反演及验证 被引量:13

Inversion and Validation of Leaf Area Index Based on the Spectral & Knowledge Database Using MODIS Data
下载PDF
导出
摘要 目前用物理模型反演叶面积指数普遍存在缺少先验知识的状况,如何获得准确的先验知识是遥感走向应用的一个关键环节。中国典型地物标准波谱数据库就是结合国家重大行业中的应用需求,研究制定地物波谱获取与分析的技术规范和数据标准,建立典型地物标准波谱数据库。从波谱数据库提取模型反演所需要的先验知识,实现了基于SAIL模型的MOD IS数据(经过几何纠正与大气纠正)叶面积指数的反演。另外,基于TM数据,对MOD IS混合像元进行了分解,用纯像元的叶面积指数与实测数据进行对比验证,同时,反演结果与NASA的LAI产品也进行了对比,结果表明基于波谱库的先验知识可以有效的提高叶面积指数的反演精度。 It is feasible to retrieve LAI over large area from remote sensing data with physical models; however, it is quite difficult to get accurate LAI and thus limit the remote sensing application without enough prior knowledge due to the underdetermined parameters in the physical inversion models. A spectrum database system of typical objects in China(SpecLib) has been set up recently, which may provide a priori knowledge of typical land cover for LAI inversion. MODIS data is used to retrieve LAI after atmosphere correction, geometrical correction and cloud identification. The SAIL (Scattering by Arbitrarily Inclined Layers) model is applied for the inversion of LAI for MODIS data. The vegetation coverage of the mixed pixels of the MODIS data are calculated based on the TM data sets. The LAIs of pure pixels ( computed from the retrieved LAIs and vegetation coverage) are compared with the field measurement data in Luancheng, Heibei Province, China. Meanwhile, the LAIs of pure pixels are also compared with the MODIS LAI data products. The inversion results show that the SpecLib effectively improved the accuracy of leaf area index inversion.
出处 《遥感学报》 EI CSCD 北大核心 2006年第6期869-878,共10页 NATIONAL REMOTE SENSING BULLETIN
基金 中国科学院知识创新工程重要方向项目(编号:KZCX3-SW-338) 国家自然科学基金(编号:NSFC40371087) 国家重点基础发展规划项目(编号:2000077903)资助
关键词 波谱库 MODIS数据 叶面积指数 反演 SpecLib moderate resolution imaging spectrometer(MODIS) leaf area index inversion
  • 相关文献

参考文献19

  • 1Veroustraete F,Patyn J,Myneni R B.Estimating Net Ecosystem Exchange of Carbon Using the Normalized Difference Vegetation Index and an Ecosystem Model[J].Remote Sens.Environ.,1996,58:115-130.
  • 2Clevers J G P W.The Application of a Weighted Infrared-red Vegetation Index for Estimating Leaf Area Index by Correcting for Soil Moisture[J].Remote Sens.Environ.,1989,29:25-37.
  • 3Asrar G,Kanemasu E T,Yoshida M.Estimates of Leaf Area Index from Spectral Reflectance of Wheat Under Different Cultural Practices and Solar Angle[J].Remote Sens.Environ.,1985,17:1-11.
  • 4Hatfield J L,Kanemasu E T,Asrar G,et al.Leaf Area Estimates from Spectral Measurements over Various Planting Dates of Wheat[J].Int.J.Remote Sens.,1985,6:167-175.
  • 5Best R G,Harlan J C.Spectral Estimation of Green Leaf Area Index of Oats[J].Remote Sens.Environ.,1985,17:27-36.
  • 6Chance J E.Crop Identification and Leaf Area Index Calculation with Landsat Multispectral Data[J].Int.J.Remote Sens.,1981,2:1-14.
  • 7Daughtry C S T,Bauer M E,Crecellius D W,et al.Effects of Management Practices on Reflectance of Spring Wheat Canopies[J].Agron.J.1980,72:1055-1060.
  • 8Baret F,Guyot G.Potentials and Limits of Vegetation Indices for LAI and APAR Assessment[J].Remote Sensing of Environment,1991,35:161-173.
  • 9Qin W,Liang S.Plane-Parallel Canopy Radiation Transfer Modeling:Recent Advances and Future Directions[J].Remote Sens.Review,2000,18(2-4):281-306.
  • 10Goel N S,Thompson R L.Inversion of Vegetation Canopy Reflectance Models for Estimating Agronomic Variables IV:Total Inversion of the SAIL Model[J].Remote Sens.Environ.,1984,15:237-253.

二级参考文献12

  • 1李小文,王锦地,项月琴,A.H.Strahler.用广角图象同时测量针叶树冠层叶角分布和叶面积指数的方法研究(英文)[J].遥感学报,1997,1(S1):62-69. 被引量:5
  • 2王锦地,李小文,项月琴.用针叶和阔叶树冠的观测数据对树冠断层成象算法的验证(英文)[J].遥感学报,1997,1(S1):70-78. 被引量:3
  • 3AndresKuusk,张仁华.以冠层反射解析模型的反演算法监测叶面积指数及叶绿素含量(英文)[J].遥感学报,1997,1(S1):174-178. 被引量:4
  • 4Friedman D, Geiger N, Goldszmidt M. Bayesian network classifiers [J]. Machine Learning, 1997,29(2) :131 ~ 161.
  • 5Friedman N, Elidan G. Learning the dimensionality of hidden variables [A]. In: Proceedings of Seventeenth Conference on Uncertainty in Artificial Intelligence (UAI ) [C] , Seattle,Washington, USA, 2001:144~151.
  • 6HASI Bagan, MA Jian-wen. The Self-Organizing Feature Map Neural Networks Classification of the ASTER Data Based on Wavelet Fusion [J]. China Science[D], 2003, 33 (9): 896~902.
  • 7Cheng J, Bell DA, Liu W. An algorithm for Bayesian belief network construction from data[A]. In: Proceedings of Artificial Intelligence & Statistics[C] , Ft. Lauderdale, Florida, USA, 1997:83~90.
  • 8Heo JOON, Ftzhugh Thomas W. A standardized radiometric normalization method for change detection using remotely sensed imagery[J]. Photogrammetric Engineering & Remote Sensing, 2000,66(2) :173~181.
  • 9Cheng J, Greiner R, Kelly J, et al. Learning Bayesian networks from data: an information-theory based approach [J]. The Artificial Intelligence Journal, 2002, 137 ( 1 ) :43~90.
  • 10Fayyad U M, Irani K B. Multi-interval discretization of continuousvalued attributes for classification learning [ A ]. In: Proceedings of the 13th International Joint Conference on Artificial Intelligence[C] ,San Mateo, CA, 1993:1022 ~ 1027.

共引文献31

同被引文献281

引证文献13

二级引证文献134

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部