期刊文献+

基于SIFT特征的遥感影像自动配准 被引量:154

SIFT Based Automatic Registration of Remotely-sensed Imagery
下载PDF
导出
摘要 遥感影像的自动配准是长期以来一直未能很好解决的一个重要问题。本文将视频图像匹配中获得巨大成功的SIFT(Scale Invariant Feature Transform)特征应用于遥感影像的自动配准问题中,并且针对遥感影像的成像特点,给出了一种具体的特征匹配方法。对航空和航天遥感影像在不同的变形、不同的光照变化和不同的分辨率下进行的大量实验表明,该方法具有稳定、可靠、快速等特点。 Automatic registration of remotely-sensed imagery is a classical problem, and has not been well solved till now. In this paper, SIFT(Scale Invariant Feature Transform) feature, which has shown great success in computer vision, is introduced into image registration in remote sensing. In addition, we also proposed a feature matching approach based on the specific characteristic of the remote sensing imagery. Numerous experiments have been conducted for both aerial and satellite imageries under various conditions such as geometric distortion, illumination variation and different resolution. The results showed that our matching approach performs well, and is stable, reliable and efficient.
出处 《遥感学报》 EI CSCD 北大核心 2006年第6期885-892,共8页 NATIONAL REMOTE SENSING BULLETIN
基金 国家自然科学基金资助课题(编号:60375006) 山西省自然科学基金(编号:20051032)资助
关键词 遥感影像 自动配准 SIFT 图像配准 remotely-sensed imagery automatic registration SIFT ( Scale Invariant Feature Transform ) image registration
  • 相关文献

参考文献12

  • 1Brown L G.A Survey of Image Registration Techniques[J].ACM Computing Survey,1992,24:325-376.
  • 2Zitová B,Flusser J.Image Registration Methods:A Survey[J].Imaging and Vision Computing,2003,21:977-1000.
  • 3Moigne J L,Campbell W J,Cromp R F.An Automated Parallel Image Registration Technique Based on the Correlation of Wavelet Features[J].IEEE Trans.Geoscicence and Remote Sensing,2002,40(8):1849-1864.
  • 4Kennedy R E,Cohen W B.Automated Designation of Tie-points for Image-to-image Coregistration[J].International Journal of Remote Sensing,2003,24(17):3467-3490.
  • 5Bentoutou Y,Taleb N,Kpalma K,et al.An Automatic Image Registration for Application in Remote Sensing[J].IEEE Trans.Geoscience and Remote Sensing,2005,43(9):2127-2137.
  • 6Mikolajczyk K,Schmid C.A Performance Evaluation of Local Descriptors[J].IEEE Trans.Pattern Analysis and Machine Intelligence,2005,27(10):1615-1630.
  • 7Lowe D G.Distinctive Image Features from Scale-invariant Keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 8Brown M,Lowe D G.Recognising Panoramas[A].In Proceedings of the 9th International Conference on Computer Vision(ICCV03)[C].Nice,October,2003.
  • 9Schaffalitzky F,Zisserman A.Multi-view Matching for Unordered Image Sets,or How do I Organize my Holiday Snaps?[A].Proceedings of the 7th European Conference on Computer Vision(ECCV02)[C].2002.
  • 10Lindeberg T.Scale-Space Theory in Computer Vision[M].The Kluwer International Series in Engineering and Computer Science,Kluwer Academy Publishers,Dordrecht,Netherlands,1994.

同被引文献1215

引证文献154

二级引证文献1202

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部