期刊文献+

Hindmarsh-Rose神经网络的混沌同步 被引量:6

THE CHAOTIC SYNCHRONIZATION OF HINDMARSH-ROSE NEURAL NETWORKS
下载PDF
导出
摘要 研究了通过特殊构造的非线性函数耦合连接的神经网络的混沌同步问题。在发展基于稳定性准则的混沌同步方法的基础上,给出了计算同步稳定性的误差发展方程,当耦合强度取参考值时,可实现稳定的混沌同步而不需要计算最大条件Lyapunov指数去判定是否稳定。通过对按照完全连接形式构成的Hindmarsh-Rose神经网络的数值模拟,显示可仅从两个耦合神经的耦合强度的稳定性范围预期到许多耦合神经实现同步的稳定性范围。该方法在噪声影响下,对实现神经元的混沌同步仍具有较强的鲁棒性。此外发现随着耦合神经数的增加,满足同步稳定性的耦合强度减小,与耦合神经的数量成反比。 The chaotic synchronizations of neural networks linked by a nonlinear coupling function were discussed. The method was an expansion of SC method of chaotic synchronization based on the stability criterion. The evolutional equation of the difference was provided for calculating the synchronization stability. The stable chaotic synchronization could be achieved without calculation of the maximum conditional Lyapunov exponent when the coupling strength was taken as reference value. H-R neural network according to all-to-all form are treated as numerical example. It was shown that the stability region of coupling strength of numerous coupling neurons for achieving chaotic synchronization each other eould be expected from estimating stability region of two coupling neurons only. Besides, the authors found that with increasing of the number of the coupled neurons, the coupling strength of satisfying stability equation of synchronization decreased. In order to achieve synchronization of a great deal coupling neurons in a network, we only need very low coupling strength. This method is still robust for chaotic synchronization even if with the influence of noise.
作者 于洪洁 林晨
出处 《生物物理学报》 CAS CSCD 北大核心 2006年第5期383-388,共6页 Acta Biophysica Sinica
基金 国家自然科学基金(10572086) 博士学科点专项科研基金(20050248031)资助~~
关键词 混沌同步 非线性耦合 稳定性准则 H—R神经网络 噪声 Chaotic synchronization Nonlinear coupling function. Stability criterion H-R neural networks Noise
  • 相关文献

参考文献9

  • 1Wang W,Perez G,Cerdeira HA.Dynamical behavior of the firings in a coupled neuronal system.Phys Rev E,1993,47:2893~2898
  • 2Shuai JW,Durand DM.Phase synchronization in two coupled chaotic neurons.Phys Lett A,1999,264:289~297
  • 3Rosa ML,Rabinovich MI,Huerta R.Slow regularization through chaotic oscillation transfer in an unidirectional chain of Hindmarsh-Rose models.Phys Lett A,2000,266:88~93
  • 4Dhamala M,Jirsa VK,Ding M.Enhancement of neural synchrony by time delay.Phys Rev Lett,2004,92:074104-1~074104-4
  • 5于洪洁,彭建华.Hindmarsh-Rose神经元模型的混沌控制[J].生物物理学报,2005,21(4):295-300. 被引量:9
  • 6Yu HJ,Liu YZ,Peng JH.Control of chaotic neural networks based on contraction mappings.Chaos Solitons and Fractals,2004,22:787~792
  • 7Pecora LM,Carroll TL.Master stability functions for synchronized coupled systems.Phys Rev Lett,1998,80:2109~2112
  • 8Ali MK,Fang JQ.Synchronization of chaos and hyperchaos using linear and nonlinear feedback functions.Phys Rev E,1997,55:5285~5290
  • 9Yu HJ,Liu YZ.Chaotic synchronization based on stability criterion.Phys Lett A,2003,314:292~298

二级参考文献29

  • 1阮炯.混沌应用研究的动态及分析[J].自然杂志,1995,17(6):318-322. 被引量:10
  • 2Freeman WJ. The physiology of perception. Scientific American, 1991,264(2):78-85.
  • 3Ott E, Grebogi C, Yorke JA. Controlling chaos. Phys Rev Lett, 1990,64:1196-1199.
  • 4Pecora LM, Carrol TL. Synchronization in chaotic system.Phys Rev Lett, 1990,64:821-824.
  • 5Pyragas K. Continuous control of chaos by self-controlling feedback. Phys Lett A, 1992,170:421-428.
  • 6Yu HA, Liu YZ. Chaotic synchronization based on stability criterion of linear system. Phys Lett A, 2003,314:292-298.
  • 7Yu H J, Liu YZ. Continuous control of chaos based stability criterion. Phys Rev E, 2004,69:066203-0662039.
  • 8Ditto WL, Rauseo SN, Spano ML. Experimental control of chaos. Phys Rev Lett, 1990,65:3211-3214.
  • 9Shinbrot T, Grebogi C, Ott E, Yorke JA. Using small perturbations to control chaos. Nature, 1993,363:411-417.
  • 10Atlee Jackson E, Grosu I. An open-plus-closed-loop (OPCL) control of complex dynamic systems. Physica D, 1995,85:1-9.

共引文献8

同被引文献45

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部