期刊文献+

雷达组网中联合数据关联与偏差估计方法研究 被引量:9

Research on joint data association and bias estimation method in radar networks
下载PDF
导出
摘要 针对雷达组网目标跟踪系统中,单雷达系统偏差严重影响多雷达航迹数据关联及融合跟踪质量的问题,提出了一种联合数据关联与系统偏差估计的方法。该方法利用对雷达系统偏差不敏感的新特征量———目标参照拓扑对多雷达航迹进行自适应的预关联,然后根据关联质量选择可靠的关联航迹对作为雷达系统偏差估计的先验信息,最后应用递归最小二乘算法进行偏差估计,估计结果可为预关联过程提供依据。在无需外界提供关联先验信息的情形下,该方法实现了对静态系统偏差的在线估计,从而可以进行及时的校准,保证了后续数据处理的有效性,具有很高的工程应用价值。仿真结果表明了该方法的有效性。 A joint data association and bias estimation method is proposed to handle the negative effect of individual radar bias to track association and fusion in radar networks for target tracking. The method utilizes a new feature, target reference topology, which is robust to radar biases to perform an adaptive pre-association. Then after selecting the reliable counterpart of tracks reported by diverse radars as the prior information, the bias estimation can be eventually made by a reeursive least square estimator and the results are useful to adjust the pre-association process. Without the need of providing the extra association information, the online estimation of constant bias of radars is achieved. Therefore a timely correction to the bias of radars which are being enrolled in a network can be easily implemented. The great value of the method in real applications is obvious beaeause the following data process can also be carried out effectively. Simulation result shows the effectiveness of the method.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2006年第11期1668-1671,1678,共5页 Systems Engineering and Electronics
关键词 雷达组网 航迹关联 偏差估计 递归最小二乘 数据融合 radar network track association bias estimation recursive least square data fusion
  • 相关文献

参考文献7

  • 1Bar-shalom Y.Multitarget-multisensor tracking:advanced applications[M].Boston,MA:Artech House,1989:167-207.
  • 2Blackman S,Popoli R.Design and analysis of modern tracking systems[M].Boston,MA:Artech House,1999:325-402.
  • 3Bar-Shalom Y,Li X R.Multitarget-multisensor tracking:principles and techniques[M].New Orleans:University of New Orleans,1995.
  • 4Bar-Shalom Y.Mobile radar bias estimation using unknown location targets[C]∥ Proceedings of the 3rd International Conference on Information Fusion,2000(1):10-13.
  • 5Bar-Shalom Y,Huimin Chen.Multisensor track-to-track association for tracks with dependent errors[C]∥ Proceedings of IEEE Conference on Decision and Control,Nassau,Bahamas,2004:2674-2679.
  • 6田科钰,高效,钟恢扶.多雷达数据互联算法研究[J].系统工程与电子技术,2004,26(12):1804-1806. 被引量:3
  • 7Lin X,Kirubarajan T,Bar-Shalom.Multisensor-multitarget bias estimation for asynchronous sensors[C]∥ Proceedings of SPIE Conference on Signal Processing,Sensor Fusion,and Target Recognition,2004,5429:105-116.

二级参考文献13

  • 1崔宁周,谢维信,余雄南.多传感器多目标分布跟踪中数据关联的快速算法[J].电子学报,1996,24(6):62-66. 被引量:7
  • 2蔡庆字 薛毅 张伯彦.相控阵雷达数据处理及其仿真技术[M].北京:国防工业出版社,1997..
  • 3Hall D L. Mathematical techniques on multi-sensor data fusion [ M].Norwood, MA: Artech House, 1992.
  • 4田科钰,钟恢扶.多雷达多目标数据互联算法研究[D].空军雷达学院,1999.
  • 5Bar-Shalom Y, Fortman T E. Tracking and data association[M].New York:Academic Press. 1988.
  • 6赵宗贵.信息融合技术及其研究动态--研究方向和建议[A].数据融合技术研讨会[C],1995.
  • 7Fortman T E, Bar-Shalom Y, Scheffe M. Multitarget tracking using joint probabilistic data association[A]. In Proceedings of the IEEE Conference on Deci-sion and Control[C], 1980(2): 807 - 812.
  • 8Fisher J L, Casasent D P. Fast JPDA multitarget tracking algorithm[J]. Applied Optics, 1989,28(1): 371 - 376.
  • 9Zhou B, Bose N K. Multitarget tracking in clutter:fast algorithms for data association. IEEE Transactions on Aerospace and Electronic Systems[J], 1993,29(2):352- 363.
  • 10Zhou B, Bose N K. An efficient algorithm for data association in multi-target tracking [J ]. IEEE Transactions on Aerospace and Electronic Systems, 1995,31(1 ): 458 - 468.

共引文献2

同被引文献72

引证文献9

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部