期刊文献+

具有防御功耗攻击性能的双域椭圆曲线密码处理器设计 被引量:3

Dual-Field Elliptic Curve Cryptography Processor with Countermeasures Against Power Analysis
下载PDF
导出
摘要 提出了一种新型椭圆曲线密码处理器设计方案.采用OJW(最优联合权重)点乘调度算法加速点乘运算,该方法对椭圆曲线数字签名算法的验证运算尤为有效.通过引入双域求逆与Montgomery模乘相统一的算法和数据通路,处理器能进行任意GF(p)和GF(2n)域上的有限域运算.同时针对简单功耗攻击和差分功耗攻击,本文提出了有效的抗攻击措施.基于SMIC0.18CMOS工艺的实现结果表明,该设计在面积、速度、芯片抗攻击性能方面较同类设计有明显优势. A new Elliptic Curve Cryptography (ECC) processor is proposed in this paper, which supports Galois fields GF(p) and GF(2n) arithmetic for arbitrary prime numbers and irreducible polynomials by introducing a dual-field unified algorithm and data-path. To speed up the scalar multiplication, a new technique is used, which is especially useful for the verifying operation of EC Digital Signature Algorithm. At the same time, the EC arithmetic is executed in an anti-attack form. The implementation result based on SMIC 0.18 CMOS technology shows the advantages of this design in the aspects of area, speed and anti-attack performance.
出处 《小型微型计算机系统》 CSCD 北大核心 2006年第12期2321-2325,共5页 Journal of Chinese Computer Systems
基金 国家"八六三"高技术项目(2003AA1Z1270)资助 国家自然科学基金项目(90407002)资助.
关键词 椭圆曲线密码学 有限域(Galois域)运算 处理器 抗攻击 elliptic curve cryptography finite field (galois Field) arithmetic processor anti-attack
  • 相关文献

参考文献14

  • 1Goodman J,Chandrakasan A.An energy efficient reconfigurable public-key cryptography processor[J].IEEE Journal of SolidState Circuits.2001,36(11):1808-1820.
  • 2Akashi Satoh and Kohji Takano.A scalable dual-field elliptic curve cryptographic processor[J].IEEE TRANSACTION ON COMPUTERS,2003,52(4):449-460.
  • 3Daneshbeh A K,Hasan M A.Area efficient high speedelliptic curve cryptoprocessor for random curves[C].ITCC,2004:456-462.
  • 4Philip H W Leong,Ivan K H Leung.A microcoded elliptic curve processor using FPGA technology[J].IEEE Transactions on VeryLarge Scale Integration (VLSI) Systems,2002,10(5):617-712.
  • 5KoH G K,Acar T,Kaliski B S.Montgomery multiplication in GF.2k[J].Designs,Codes and Cryptography,1998,14(1):243-250.
  • 6Mamiya H.Efficient countermeasures gainst RPA,DPA,and SPA[C].CHES,LNCS3156,2004:343-356.
  • 7Marc Joye.The montgomery powering ladder[C].CHES,LNCS2523,2002:291-302.
  • 8Tawalbeh.An algorithm and hardware architecture forintegrated modular division and multiplication in GF(p) and GF(2n)[C].ASAP,2004:247-249.
  • 9Ruan Xiao-yu."Left-to-Right" optimal signedbinary representation of a pair of integers[J].IEEE Transaction on Computers,2005,54(2):124-131.
  • 10Montgomery P L.Mondular multiplication without trial division[J].Math.Computing,1985,44(170):512-519.

同被引文献17

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部