期刊文献+

基于Radon-TVAR的多分量Chirp信号检测 被引量:1

Multi-component Chirp Signal Detection Based on Radon-TVAR
下载PDF
导出
摘要 基于基函数向量矩阵的二维离散余弦变换(2D-DCT),本文提出了一种改进的时变自回归(TVAR)模型辨识算法。然后用改进的TVAR模型对多分量Chirp信号进行建模,结合Radon变换和逐次消去技术,提出一种称为Radon-TVAR的新算法,用于多分量Chirp信号的检测和参数估计。仿真结果表明新算法能有效检测多分量Chirp信号,性能优越于传统方法。 In this paper, we first proposed a modified algorithm for time-varying autoregressive (TVAR) model identification based on 2D-DCT of basis functions vector matrix. Through 2D-DCT, the redundancy of basis functions vector matrix' correlation was reduced, and the condition coefficient of coefficient matrix was decreased consequently, which avoided the appearance of ill-conditioned equation and the computation complexity was greatly decreased. Then Multi-component chirp signal was modeled with the modified model, and by combining the Radon transformation and the CLEAN method, a new technique for multi-component chirp signal detection and parameter estimation in terms of Radon-TVAR was presented. Simulation results show that the new algorithm can detect the parameters of multi-component chirp signal more effectively than the traditional methods.
出处 《电子测量与仪器学报》 CSCD 2006年第5期1-5,共5页 Journal of Electronic Measurement and Instrumentation
基金 国家自然科学基金资助项目(编号:60271023)。
关键词 参数估计 二维离散余弦变换(2D—DCT) Radon-TVAR CHIRP信号 parameter estimation, 2D-DCT, Radon-TVAR, chirp signal.
  • 相关文献

参考文献10

  • 1Johnston James D. Transform Coding of Audio Signals Using Perceptual Noised Criteria. IEEE Select Ares Commun, 1988, 6(2) : 314 -323.
  • 2孙泓波,顾红,苏卫民,刘国岁.基于互Wigner-Ville分布的SAR运动目标检测[J].电子学报,2002,30(3):347-350. 被引量:18
  • 3邹虹,保铮.基于频域“CLEAN”抑制WVD中的交叉项[J].西安电子科技大学学报,2000,27(4):447-451. 被引量:11
  • 4郭汉伟,王岩,杨风风,梁甸农.基于小波Radon变换检测线性调频信号[J].国防科技大学学报,2003,25(1):91-94. 被引量:10
  • 5J Rajan, P Rayner. Generalized feature extraction for timevarying autoregressive models. IEEE Transactions on Signal Processing, 1996, 44(10): 2497 -2507.
  • 6Yuanjin Zheng, David BHT, Zhiping Lin. Modeling general distributed nonstationary process and identifying timevarying autoregressive system by wavelets: theory and application. Signal Processing, 2001,81(9) : 1823 - 1848.
  • 7J P Kaipio, P A Karjalainen. Estimation of event-relate dsynchronization changes by a new TVAR method. IEEE Trans on Biomedical Engineering, 1997, 44 ( 8 ) : 649 -656.
  • 8M K Tsatsanis, G B Giannakis. Time-varying system identification and model validation using wavelets. IEEE Transactions on Signal Processing, 1993,44(12) : 3512 -3523.
  • 9王涛,王国辉,冯焕清.睡眠脑电的自回归模型阶数特性[J].生物医学工程学杂志,2004,21(3):394-396. 被引量:4
  • 10Tsao Jenho, Steinberg BD. Reduction of sidelobe and speckle artifacts in microwave imaging: the CLEAN technique. IEEE Transaction on Antrennas and Propagation, 1988, 36 (4) : 543 -556.

二级参考文献16

  • 1殷勤业,倪志芳,钱世锷,陈大庞.自适应旋转投影分解法[J].电子学报,1997,25(4):52-58. 被引量:40
  • 2毛引芳,陈国安.基于WVD-HT的SAR/ISAR多运动目标检测[J].电子科学学刊,1997,19(4):464-470. 被引量:5
  • 3白平.[D].中科院电子所,1997.
  • 4孙洪波.[D].南京理工大学,2001.
  • 5赵建平 黄建国.信号瞬时特征的小波分析方法[A]..CCSP-94论文集[C].,.184-187.
  • 6[1]Kay SM,Marple SL.Spectrum analysis-a modern perspective.Proc IEEE,1981;69:1380
  • 7[2]Djuric PM,Kay SM.Order selection of autoregressive models.IEEE Trans Signal Processing,1992;40(11):2829
  • 8[3]Broersen PMT,Wensink HE.Autoregressive model selection by a finite sample estimator for the Kullback-Leibler discrepancy.IEEE Trans Signal Processing,1998;46(7):2058
  • 9[4]Rezek IA,Roberts SJ.Stochastic complexity measures for physiological signal analysis.IEEE Trans BME,1998;45(9):1186
  • 10[5]Broesen PMT.Facts and fiction in spectral analysis.IEEE Trans Instrumentation Measurement,2000;49(4): 766

共引文献38

同被引文献16

引证文献1

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部