期刊文献+

自适应交互PID在液压伺服系统中的应用 被引量:10

APPLICATION OF ADAPTIVE INTERACTION PID CONTROLLER IN HYDRAULIC SERVO SYSTEM
下载PDF
导出
摘要 自适应交互算法实现简单,能够在未知系统模型的前提下完成控制参数梯度递减,使系统控制性能趋向优化。将自适应交互算法引入到传统的PID控制器中,构成一种自适应交互PID控制器,将该控制器应用到宝钢2050粗轧液压立辊压下系统中,结果表明在外界扰动和系统工况发生变化时,该控制器能够自适应调节控制器参数,使控制系统取得满意的控制效果。 Adaptive interaction algorithm, whose advantage is easy to implement, can perform gradient descent of control parameters without any knowledge of plant. Based on adaptive interaction theory and classical PID controlling theory, an adaptive interaction PID controller is developed. The good performance of adaptive interaction PID is verified by the application of hydraulic edger screwdown system in Baosteel 2050 rough mill. The results show that the adaptive interaction PID controller achieves better performance than the classic one, especially, in the circumstance of foreign disturbance and working condition variation.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2006年第11期179-183,共5页 Journal of Mechanical Engineering
基金 国家自然科学基金(50175097)
关键词 自适应交互理论 PID控制器 液压伺服系统 热轧 Adaptive interaction theory PID controller Hydraulic servo system Hot rolling
  • 相关文献

参考文献7

  • 1BRANDT R D,LIN F.Supervised learning in neural networks without explicit error backpropagation:proceedings of the 32nd Annual allerton Conference on Communication,Control and Computer[C].Monticello:UIUC,1994:294-303.
  • 2BRANDT R D,LIN F.Can supervised learning be achieved without explicit error backpropagation:proceedings of the International Conference on Neural Networks[C].New York:IEEE,1996:300-305.
  • 3BRANDT R D,LIN F.Supervised learning in neural networks without feedback network[J].IEEE International Symposium on Intelligent Control,1996:86-90.
  • 4LIN F,BRANDT R D,SAIKALIS G.Self-tuning of PID controllers by adaptive interaction:Proceedings of the American Control Conference[C].Chicago:IEEE,2000:3676-3680.
  • 5陶永华.新型PID控制及其应用[M].北京:机械工业出版社,2002..
  • 6邹俊,傅新,杨华勇,张健民.免疫PID在液压位置伺服系统中的应用研究[J].机械工程学报,2005,41(1):1-5. 被引量:16
  • 7邹俊,傅新,杨华勇,张健民.粗轧基础自动化宽度控制和仿真系统研究[J].钢铁,2005,40(4):49-52. 被引量:8

二级参考文献7

共引文献440

同被引文献83

引证文献10

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部