期刊文献+

一个基于命名网络的自稳定的选举算法 被引量:1

A Self-Stabilizing Leader Election Algorithm In Named Network
下载PDF
导出
摘要 选举问题是分布式计算中的一个基本问题。它一直受到广泛关注,先后发表了一大批研究论文。但是,现有的研究较少涉及选举算法的自稳定性,已经提出的自稳定选举算法的性能还不能令人满意。针对两个经典的自稳定选举算法———AG算法和DIM算法进行了分析。AG算法适用于命名网络,算法虽然简单,但算法需要假设网络的大小是已知的并且时间复杂度为O(n2),其中n表示网络结点数目。DIM算法虽不需要网络大小假设是已知的,但其时间复杂度仍然需要O(ΔDlogn),其中Δ和D分别表示结点最大的度和树的深度。利用DIM算法的思想,在AG算法的基础上,提出了一个基于命名网络的自稳定选举算法。该算法不需要知道网络的大小,而且时间复杂度为O(δ)(δ为网络直径)。 Leader election algorithm is a fundamental algorithms in distributed computing, which has been studied extensively, but less papers involve its self-stabilization, and existing self-stabilizing election algorithms don't perform well. We analyze two classical self- stabilizing leader election algorithms - AG algorithm and DIM algorithm. The former is for the ID- based network and simple, but it assumes having knowledge about the network's size and its time complexity is O(n^2), where n denotes the number of nodes, Although the latter doesn't assume the network' s size, its time complexity is O(ΔDlogn ) yet, where A and D denote the maximal degree among all nodes nd depth of the tree respectively. We utilize the idea of DIM algorithm and propose a self- stabilizing leader election algorithm for the ID - base network. The new algorithm assumes no knowledge about the network's size and its time complexity is O(δ)(δ denotes the diameter of the network).
作者 林克旺
出处 《基建优化》 2006年第4期60-64,共5页 Optimization of Capital Construction
基金 国家自然科学基金资助(69383004) 福建省自然科学基金资助(A0310007)
关键词 选举问题 自稳定算法 命名网络 leader election self-stabilizing algorithm named network
  • 相关文献

参考文献7

  • 1S.Dolev,Self-Stabilization[ M].The MIT Press,2000.
  • 2FE Fich and C.Johnen.A space optimal,deterministic,self-stabilizing,leader election algorithm for unidirectional rings[J].In DISC01 Distributed Computing 15th International Symposium,Springer LNCS:2180,pages 224 239,2001.
  • 3G Itkis,C Lin,and J Simon.Deterministic,constant space,self-stabilizing leader election on uniform rings[J ].In WDAG95 Distributed Algorithms 9th International Workshop Proceedings,Springer LNCS:972,pages 288302,1995.
  • 4J.Beauquier,M.Gradinariu,and C.Johnen.Memory space requirements for self-stabilizing leader election protocols[J].In PODC99 Proceedings of the Eighteenth Annual ACM Symposium on Principles of Distributed Computing,pp199 207,1999.
  • 5A.Arora and M.Gouda.Distributed Reset[J].In Lecture Notes in Computer Science 472:Foundations of Software Technology and Theoretical Computer Science (Proceedings of the Tenth Conference on Foundations of Software Technology and Theoretical Computer Science),December 1990,K.V.Nori andC.E.Veni Madhavan(Eds.) pp.316 -331,Springer-Verlag,1990.
  • 6S.Dolev,A.Israeli,and S Moran.Uniform dynamic self-stabilizing leader election[J ].IEEE Transactions on Parallel and Distributed Systems,8(4):424 440,1997.
  • 7G.Tel,Introduction to Distributed Algorithms[M].Second Edition,Cambridge University Press Pub.2000.

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部