期刊文献+

BP神经网络在液相传质系数中的应用 被引量:3

Application of BP neural network in liquid-side mass transfer coefficients
下载PDF
导出
摘要 根据BP(Back-Propagation)神经网络原理,以气、液表观流率为输入变量,液相传质系数为输出变量,建立神经网络模型,并利用改进的LM(Levenberg-Marquardt)算法对网络进行了训练和优化。结果表明,BP神经网络能够较好地预测滴流状态下H2O吸收CO2液相传质系数。 Based on the principle of BP(Back-Propagation)neural network, a neural network model was established, with gas and liquid velocities as inputs, liquid-side mass transfer coefficient as output. By using Levenberg-Marquardt(LM)algorithm, the net was trained and optimized. Results showed that BP neural network could predict liquid-side mass transfer coefficient for CO2 absorbed by H2O in the trickled condition.
出处 《长春工业大学学报》 CAS 2006年第4期283-285,共3页 Journal of Changchun University of Technology
基金 吉林省科技厅科学基金资助项目(19980564)
关键词 液相传质系数 BP神经网络 liquid-side mass transfer coefficient BP neural network.
  • 相关文献

参考文献7

  • 1Lexington.DARPA neural network study[M].Lexington:MIT Lincoln Laboratory,1988.
  • 2Werbos P J.Beyond regression:New tools for prediction and analysis in the behavioral sciences[D].[S.l.]:Harvard University,1974.
  • 3Mordechay Herskowitz,Smith J M.Trickle-bed reactors:A Review[J].AlChE,1983,29 (1):1-18.
  • 4Fritz T,Rudiger L.Mass transfer in trickle-bed reactors at low reynolds number[J].Chemical Engineering Science,1981,36:569-579.
  • 5Martin T H,Howard B D,Mark B.Neural network design[M].Beijing:China Machine Press,2002.
  • 6何雪忠,张香平,张锁江,李春山,刘金盾.改进的L-M算法用于大分子体系相平衡的神经网络预测[J].化工学报,2005,56(3):392-399. 被引量:8
  • 7陈甘棠.化学反应工程[M].北京:化学工业出版社,1990..

二级参考文献20

  • 1何小荣.化工过程优化[M].Beijing:Tsinghua University Press,2002..
  • 2Rumelhart D E,Hinton G E, Wiliams R J. Learning representations by back-propagating errors.Nature,1986,323:533-536.
  • 3Rigler A K, Irvine J M, Vogl T P. Rescaling of variables in back-propagation learning. Neural Networks,1991,4(2): 225-229.
  • 4Samad T. Back propagation with expected source values. Neural Networks, 1991,4:615-618.
  • 5Van Ooyen A, Nienhuis B. Improving the convergence of the back-propagation algorithm.Neural Networks,1992,5:465-471.
  • 6Solla S A, Levin E, Fleisher M. Accelerated learning in layered neural networks. Complex Syst., 1988,2: 625-640.
  • 7Eaton H A C, Olivier T L. Learning coefficient dependence on training set size.Neural Networks,1992,5:283-288.
  • 8Anand R, Mehrottra K G, Mohan C K, Ranks S. An improved algorithm for neural network classification of imbalanced training sets.IEEE Trans on Neural Networks, 1993,4(6): 962-969.
  • 9Jacobs R A. Increased rate of convergence through learning rate adaptation. Neural Networks, 1988,1: 295-307.
  • 10Hagan M T, Menhaj M. Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks, 1994, 5 (6): 989-993.

共引文献23

同被引文献16

  • 1孙瑛,王承学,李敏,杨绍军.滴流床反应器AMS加氢制异丙苯[J].长春工业大学学报,2005,26(2):102-104. 被引量:5
  • 2齐国祯,谢在库,钟思青,张成芳,陈庆龄.滴流床的压降和持液量[J].华东理工大学学报(自然科学版),2006,32(1):20-23. 被引量:7
  • 3张贻民,梁明.数学建模的几种基本预测方法的探讨[J].茂名学院学报,2006,16(6):39-42. 被引量:12
  • 4SiemensmaA. D. Trends in Food[J]. Sci. & Technol. ,1993(4):16-21.
  • 5Adler-Nissen L. Enzymatic hydrolysis of food protein[M]. [S. l. ] : Elsevier Applied Science Publishers, 1986 : 175-179.
  • 6Turpin J. L., Huntington R. L. Prediction of pressure drop for two-phase t wo-eomponent eourrent flow inpacked bed[J]. A. I. Ch.E. Journal, 1967,13(6) : 1196-1202.
  • 7Specchia V. , Silvio S. , Ago S. G. Absorption in packed towers with concurrent upflow[J]. A. I. Ch, E. Journal,1974,20(4) :646-653.
  • 8Muthama H. A. , Faical L. , Milorad P. D. , et al. High-pressure trickle-bed reactor: A review [J ]. Ind. Eng. Chem. Res.,1997,36:3292-3314.
  • 9Babcock B. D. , Mejdell G. T. , Hougen A. Catalyzed gas-liquid reactor intreckling-bed reactor[J]. A. I. Ch.E. Journal,1957,3(3)..366-372.
  • 10A. J. Carleton, R. J. properties of a packed Flain, J. R. Rennie. Some bubble eolumn[J]. Chem. Eng. Scince, 1967,22 : 1839-1845.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部