期刊文献+

基于隐马尔可夫模型-径向基神经网络的表面肌电信号识别 被引量:3

A HMM-RBFN hybrid classifier for surface electromyography signals classification
下载PDF
导出
摘要 目的:利用隐马尔可夫模型-径向基神经网络(HMM-RBFN)混合模型对7种手指动作进行辨识,探索控制HIT多自由度灵巧手的有效控制策略。方法:8例健康实验对象参加了试验,4例女性,4例男性。每例实验对象按提示完成7种手指动作,每种动作重复50次。通过表面肌电信号(sEMG)采集系统,提取实验对象前臂4块肌肉的sEMG,在对其进行预处理并提取小波变换特征向量后,分别送入HMM模型分类器及HMM-RBFN混合模型分类器进行训练。结果:HMM-RBFN混合模型识别效果和稳定性都大大优于HMM模型,验证了HMM-RBFN混合模型的有效性。结论:①HMM模型在sEMG识别中的效果没有其在语音信号识别中的好,有必要对其进行改进,以便更好的应用于sEMG的识别;②将HMM模型和神经网络组成混合分类器,可以弥补彼此的不足,获得更好的性能。 Objective:To classify surface electromyography(sEMG) signals by using HMM-RBFN hybrid classifier and to explore the strategy of effectively controlling hand prosthesis. Method:Eight subjects (male 4, female 4) with normal upper limbs were selected in the experiments. Each subject was instructed to perform 7 kinds of fingers movement and each motion was repeated 50 times. The sEMG signals were recorded on 4 forearm muscles. Features of sEMG signals were extracted using wavelet transform and conveyed to HMM classifier and HMM-RBFN hybrid classifier for training. Result: HMM-RBFN hybrid classifier provided better results than that from the single HMM classifier.Conclusion:①The performance of HMM classifier is not so excellent in sEMG signal discrimination. ②The HMM-RBFN hybrid classifier combine the advantages of two individual classifiers and offset their disadvantages,hence it achieves higher discrimination, accuracy and stability.
出处 《中国康复医学杂志》 CAS CSCD 北大核心 2006年第11期1016-1018,共3页 Chinese Journal of Rehabilitation Medicine
基金 国家自然科学基金资助项目(50435040) 黑龙江省教育厅资助项目(1512225)
关键词 隐马尔可夫模型 径向基神经网络 表面肌电信号 假手 hidden Markov model radial basis function networks surface electromyography hand prosthesis
  • 相关文献

参考文献5

二级参考文献24

  • 1时文刚,刘树林,张嘉钟,黄文虎.基于支持向量机的往复泵泵阀故障诊断方法[J].机械强度,2002,24(3):362-364. 被引量:32
  • 2韩力群.人工神经网络理论、设计及应用(第1版)[M].北京:化学工业出版社,2002.91.
  • 3Heinz M,Knapp RB.A neural network based classifier for the identification of simple finger motion[C].IEEE International Conference on Neural Networks,1996,3:1606-1609.
  • 4Kwon Jang Woo,Jang Young Gun,Kim Byung Soo,el al.Probabilistic-neural pattern classifier and the muscle force estimation[C].Proceedings of the Annual Conference on Engineering in Medicine and Biology,1993,15:1145-1146.
  • 5Bu Nan,Tsuji Toshio,Fukuda Osamu.MMI-based Training for a Probabilistic Neural Network [C].Proceedings of the International Joint Conference on Neural Networks,2003,4:2661-2666.
  • 6Tsuji Toshio,Bu Nan,Fukuda Osamu,el al.A recurrent loglinearized Gaussian mixture network [C].IEEE Transactions on Neural Networks,2003,14:304-316.
  • 7Bu Nan,Fukuda Osamu,Tsuji Toshio.EMG-based motion discrimination using a novel recurrent neural network [C].Journal of Intelligent Information Systems,2003,21:113-126.
  • 8Guo Xin,Yang Peng,Li LiFeng,el al.Study and analysis of surface emg for the lower limb prosthesis [C].Proceedings of 2004 International Conference on Machine Learning and Cybernetics,2004,,6:3736-3740.
  • 9Karlik B,Tokhi MO,Alci M.Fuzzy clustering neural network architecture for multifunction upper-limb prosthesis [C].IEEE Transactions on Biomedical Engineering 50:2003,11:1255-1261.
  • 10Xiaowen Zhang,Yupu Yang,Xiaoming Xu.Wavelet based neuro-fuzzy classification for EMG control Communications[C].Circuits and Systems and West Sino Expositions,IEEE 2002International Conference on,2002,2:1087-1089.

共引文献19

同被引文献47

引证文献3

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部