摘要
目的:利用隐马尔可夫模型-径向基神经网络(HMM-RBFN)混合模型对7种手指动作进行辨识,探索控制HIT多自由度灵巧手的有效控制策略。方法:8例健康实验对象参加了试验,4例女性,4例男性。每例实验对象按提示完成7种手指动作,每种动作重复50次。通过表面肌电信号(sEMG)采集系统,提取实验对象前臂4块肌肉的sEMG,在对其进行预处理并提取小波变换特征向量后,分别送入HMM模型分类器及HMM-RBFN混合模型分类器进行训练。结果:HMM-RBFN混合模型识别效果和稳定性都大大优于HMM模型,验证了HMM-RBFN混合模型的有效性。结论:①HMM模型在sEMG识别中的效果没有其在语音信号识别中的好,有必要对其进行改进,以便更好的应用于sEMG的识别;②将HMM模型和神经网络组成混合分类器,可以弥补彼此的不足,获得更好的性能。
Objective:To classify surface electromyography(sEMG) signals by using HMM-RBFN hybrid classifier and to explore the strategy of effectively controlling hand prosthesis. Method:Eight subjects (male 4, female 4) with normal upper limbs were selected in the experiments. Each subject was instructed to perform 7 kinds of fingers movement and each motion was repeated 50 times. The sEMG signals were recorded on 4 forearm muscles. Features of sEMG signals were extracted using wavelet transform and conveyed to HMM classifier and HMM-RBFN hybrid classifier for training. Result: HMM-RBFN hybrid classifier provided better results than that from the single HMM classifier.Conclusion:①The performance of HMM classifier is not so excellent in sEMG signal discrimination. ②The HMM-RBFN hybrid classifier combine the advantages of two individual classifiers and offset their disadvantages,hence it achieves higher discrimination, accuracy and stability.
出处
《中国康复医学杂志》
CAS
CSCD
北大核心
2006年第11期1016-1018,共3页
Chinese Journal of Rehabilitation Medicine
基金
国家自然科学基金资助项目(50435040)
黑龙江省教育厅资助项目(1512225)
关键词
隐马尔可夫模型
径向基神经网络
表面肌电信号
假手
hidden Markov model
radial basis function networks
surface electromyography
hand prosthesis