摘要
对一维非齐次波动方程的始值问题在传统的叠加原理、达朗贝尔公式、齐次化原理的方法之外,完全用特征线方法,先将方程表示为a)(a)u f(x,t)t x t x(??+???????=的形式,进而引入中间变量Vu a u=??t???x,得以用一阶方程??tυ+a??υx=f(x,t)及??ut?a??xu=V(x,t)的特征线方法,推导出维该始植问题的与传统方法相同的解。
Beyond the usual method, the one dimensional equation was expressed in the form of 偏d/(偏d)t+a偏d/(偏d)x][偏d/(偏d)t-a((偏d)/(偏d)x)]u=f(x,t) which then was introduced by middle vaxible (偏d)u/(偏d)t-a((偏d)u/(偏d)x=V(x,t),so that the same solution of initial value problem by the characteristic curve method of the first order equations [(偏d)v/(偏d)t+a((偏d)v/(偏d)x)=f(x,t) and (偏d)u/(偏d)t-a((偏d)u/(偏d)x=V(x,t) was abtained.
出处
《辽宁工学院学报》
2006年第5期344-346,共3页
Journal of Liaoning Institute of Technology(Natural Science Edition)
关键词
一维非齐次波动方程
始值问题
特征方程
特征线
wave equation in one dimension, initial value problem
characteristic equation
characteristic curve