期刊文献+

分形元胞自动机在自组织临界性中的应用 被引量:3

Application of Fractal Cellular Automata to Self-Organized Criticality
下载PDF
导出
摘要 基于元胞自动机分形模型,探讨了散粒体自组织临界性(SOC)的机制.不同级配散粒体单面坡的已有试验表明,散粒体的SOC与非均匀系数有关.应用分形理论计算了沙堆颗粒级配的分维数,结果表明,呈现SOC的沙堆,颗粒级配具有分形特征.进而假设:若大尺度非均匀沙系统的组构特征具有分形特性,系统也能呈现SOC.为解释此假设,建立了既能表征非均匀系数又具有分形组构特征的元胞自动机沙堆模型.数值模拟表明,元胞排列方式服从分形时,沙堆模型呈现SOC,而等间隔排列的模型不呈现SOC,结果与假设一致.最后对SOC的判据进行了讨论,认为系统组构特征具有分形特性是大尺度非均匀沙系统呈现SOC的必要条件. Based on a fractal cellular automata model, the mechanism of self-organized criticality (SOC) of granular mixtures was investigated. The present sandpile experiments with an one-side slope show that the self-organized criticality of granular mixtures is strongly influenced by the non-uniform degree of granular materials. The fractal dimension of grading was calculated using the fractal theory. The results show that there exists a fractal feature in the grading of sandpiles with SOC. So it was supposed that if the fabric characteristics of a system has a fractal nature, a large-dimension non- uniform sandpile, as such a system, presents SOC. A cellular automata model describing non-uniform coefficient and fractal fabric characteristic was built to explain the assumption. Through numerical simulations it was found that a sandpile model takes on SOC when cellular arrangement submits to a fractal distribution to testify the assumption. A discussion about the criterion of SOC shows that the fractal fabric characteristics of a system is the necessary condition for SOC of large-dimension granular mixtures.
出处 《西南交通大学学报》 EI CSCD 北大核心 2006年第6期675-679,共5页 Journal of Southwest Jiaotong University
基金 国家自然科学基金资助项目(5047808550278080) 国家自然科学基金西部重大研究计划(90202007)
关键词 自组织临界性 沙堆模型 散粒体 分形元胞自动机 SOC (self-organized criticality) automata sandpile model granular mixture fractal cellular
  • 相关文献

参考文献12

二级参考文献24

  • 1YAO Lingkan, HUANG Yuan & LU Yang School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China,Southwestern Institute of Physics, Chengdu 610031, China.Self-organized criticality and its application in the slope disasters under gravity[J].Science China(Technological Sciences),2003,46(z1):20-30. 被引量:10
  • 2罗德军,艾南山,李后强.泥石流暴发的自组织临界现象[J].山地研究,1995,13(4):213-218. 被引量:12
  • 3国家地震局地球物理所.非线性科学在地震预报中的应用[M].北京:地震出版社,1992.146-149.
  • 4陈家杨 胡诚有.岷江都江堰河段推移质输沙率和输移量的分析[J].泥沙研究,1985,4:50-57.
  • 5[1]Bak P, Tang C, Wiesenfeld K. Self-organized criticality[J]. Physical ReviewA, 1988, 38(1): 364~374
  • 6[2]Bak P, Chen K. Self-organized criticality[J]. Scientific American,1991, 264(1): 26~33
  • 7[3]Held G A, Solina H D H, Keane D T, et al. Experimental study of critical-mass fluctuations in an evolving sandpile[J]. Physical Review Letters, 1990, 65(9): 1 120~1 123
  • 8[7]Jaeger H M, LiuC H, Nagel S R. Relaxation at the angle of repose[J].Physical Review Letters, 1989, 62(1): 40~44
  • 9[8]Rosendahl J, Vekic M, Kelley G. Persistent self-organization of sandpile[J].Physical Review E, 1993, 47(2): 1 401~1 404
  • 10[12]姚令侃.非线性科学探索推移质运动复杂性的研究[R].成都:四川联合大学,1996

共引文献37

同被引文献20

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部