期刊文献+

基于多尺度欧拉矢量的图像检索算法 被引量:2

Image Retrieval Based on Multi-scale Euler Vector
下载PDF
导出
摘要 在分析以往基于边缘的图像检索算法的基础上,提出了一种基于多尺度欧拉矢量的图像检索算法。该算法针对灰度图像,以小波变换为基础,利用小波模极大值对图像进行多级小波分解,得到多尺度下的边缘图像,针对每一幅边缘图像,计算其欧拉数,构造一个欧拉矢量,作为对图像特征的描述。同时,考虑到欧拉矢量之间的相关性,设计了相关权值矩阵,提出采用马氏距离进行相似性度量。该矢量不仅能很好的表示图像的形状特征,而且具有平移、尺度和旋转不变性,同时它又是图像的一个整体特征,能刻画图像的拓扑结构。实验结果表明该算法计算简单,有效,匹配快速,检索结果比较理想。 A novel image retrieval based on Multi-scale Euler Vector is proposed by analyzing the existing retrieval methods on image edge. Firstly, the grey scale image is transformed by wavelet modulus maximum to get multi-scale edge images. Then the Euler number of each edge images is computed to extract the features of image. Consequently, each image is characterized by a multi-scale Euler vector in feature space. The co-relation between the features is taken into account, the co-relation matrix is constructed. Similarity is given by Mahalanobis Distance between two images' feature vectors. Multi-scale Euler Vector not only can capture the shape and spatial information of image but also can be invariant with respect to translation, scale and rotation of objects. At the same time, it can describe the topologic structure of image. The results from two image databases show that the retrieval performance is better and robust.
出处 《红外技术》 CSCD 北大核心 2006年第12期704-708,共5页 Infrared Technology
关键词 基于内容的图像检索 小波模极大值 欧拉数 content-based image retrieval wavelet modulus maximum Euler number
  • 相关文献

参考文献12

  • 1Swain M J, Ballard D H. Color indexing[J].Int.J.on Computer Vision.1991, 7(1): 11-32.
  • 2孙君顶,毋小省,周利华.基于信息熵的图像检索[J].西安电子科技大学学报,2004,31(2):223-228. 被引量:25
  • 3Park D K, Park D K, et al, Efficient use of local edge histogram descriptor[A].In Proceedings of the ACM Workshops on Multimedial[ C].Los Angeles. 2000:51-54.
  • 4Jain A K, Vallaya A. Image Retrieval Using Color and Shape[J]. Pattern Recognition. 1996, 29(8): 1233-1244.
  • 5Mahmoudi F, Shanbehzadeh J, et al. Image Retrieval Based on Shape Similarity by Edge Orientation Autocorrelogram[J]. Pattern Recognition,2003, 36: 1725-1736.
  • 6Mallat S, Hwang W L, Singularity detection and proeessing with wavelets[J], IEEE Trans lnfo Theory, 1992, 38(2): 617-643.
  • 7李宏贵,李兴国,罗正发.基于小波变换的红外图象多尺度边缘检测[J].红外技术,1998,20(6):39-41. 被引量:6
  • 8宫武鹏,王永仲,黎全.用B样条小波进行图像的多尺度边缘检测[J].红外技术,2000,22(4):15-18. 被引量:10
  • 9Cvetkovic Z. Vetterli M. Discrete time wavelet extreme representation:Design and consistent reconstruction[J]. IEEE Trans.Signal Processing.1995, 43(3): 681-693.
  • 10姚玉荣,章毓晋.利用小波和矩进行基于形状的图象检索[J].中国图象图形学报(A辑),2000,5(3):206-210. 被引量:67

二级参考文献19

  • 1刘贵忠,冯轶岭,宗涛.样条多分辨分析[J].电子学报,1996,24(7):72-77. 被引量:5
  • 21,Jacobs C E et al. Fast multi-resolution image querying. In:Proce eding of SIGGRAPH, 1995,278~280.
  • 32,Mallat S. Wavelet for a vision. In:Proceeding of the IEEE, 1996,33(4):604~614 .
  • 43,Mallat S, Hwang W L. Singularity detection and processing with wavelets. I EEE Trans Info Theory, 1992,38(2):617~643.
  • 54,Cvetkovic Z, Vetterli M. Discrete time wavelet extreme representation:Design and consistent reconstruction. IEEE Trans Signal Processing, 1995,43(3):681~693.
  • 65,Mallat S, Zhong S. Characterization of signals from multi-scale edges. IEEE Trans PAMI, 1992,14(7):710~732.
  • 76,边肇祺. 模式识别.北京:清华大学出版社,1998,248~274.
  • 87,Jain A K, Vailaga A. Image retrieval using color and shape. Pattern Recogniti on, 1996,29(8):1233~1244.
  • 9Chan S K. Content-based Image Retrieval[D]. Singapore: National Urfiversity of Singapore, 1994.
  • 10Swain M J, Ballard D H. Color Indexing[J]. Int J Comput Vision, 1991, 7(1): 11-32.

共引文献104

同被引文献27

引证文献2

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部