期刊文献+

数据挖掘技术在个人信用评估模型中的应用 被引量:8

Application of Data Mining Technique to Personal Credit Evaluating Model
下载PDF
导出
摘要 为了能够及时、恰当地进行个人信用评估分析,加快信用卡发卡机构的决策速度,介绍了数据挖掘技术在信用卡公司对用户评估中的应用,对比分析了数理统计模型、分类-聚类个人信用评估模型等几种个人信用评估模型建模方法的优缺点。建立了一种决策树-神经网络个人信用评估模型,针对该模型提出了一种近邻聚类算法。该算法不需要事先给定聚类的类别数,可以进行无监督学习。通过对比分析可知,该算法在个人信用评估应用中可以得到较理想的结果。 For the purpose of process the personal credit evaluating timely and correctly,increase the decision rate,this paper describes the requirement of the credit card company for data mining and neural network technology which apply for personal credit evaluating. Contrasted and analyzed some of personal credit evaluating model, e. g. statistical model, elassification- cluatering model, and so on. Demonstrated those excellence and disadvantage. Constructed a decision tree -neural network personal credit evaluating model. At last,give a vicinage- extended clustering algorithm,the algorithm needn't give number of clustering, and can put up unsupervised learning. The algorithm is more fit for personal credit evaluating than other methods.
出处 《计算机技术与发展》 2006年第12期172-174,177,共4页 Computer Technology and Development
基金 河南省自然科学基金(0511011500)
关键词 信用评估 分类 聚类 决策树 credit evaluating classification clustering decision tree
  • 相关文献

参考文献11

二级参考文献26

  • 1王春峰,万海晖,张维.组合预测在商业银行信用风险评估中的应用[J].管理工程学报,1999,13(1):11-14. 被引量:68
  • 2Ester,Kriegel,Sander,et al. A Density- Based Algorithm for Discovering Clustersin Large Spatial Databases with Noise[A]. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD' 96 ) [ C],Portland, Oregon: [s. n. ], 1996. 226 - 231.
  • 3Sheikholeslami, Chatterjee, Zhang. Way'luster: A Multi-Resolution Clustering Approach for Very Large Spatial Databases[A]. In. Proceedings of the 24thVLDB Conference[C]. New York City: [s. n. ], 1998. 428 - 439.
  • 4Zhang Tian,Ramakrishnan R,Livny M.BIRCH: An Efficient Data Clustering Method for Very Large Databases[A]. In.Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data[C]. Montreal, Canada. [s. n. ],1996.103 - 114.
  • 5Wang Wei, Yang Jiong, Muntz R. STING. A statistical information grid approach to Spatial Data Mining[A]. In. Proceedings of the 23rd VLDB Conference[C]. Athens, Greece:[s, n. ], 1997.186 - 195.
  • 6A Sheth.V Kashyap.So far(schematically)yet so near(semantically) 【C】.In:Proceedings of the IFIP TC2/WG2.6 Conference on Semantics of Interoperable Database Systems,Victoria,Australia,1992.
  • 7Wen—Syan Li,Chris Clifton.SEMINT:a tool for identifying attribute correspondences in heterogeneous databases using neural networks[J]. Data& Knowledge Engineering,2000;33(1).
  • 8Luigi Palopoli,Luigi Ponfiefi,Giorgio Terracina et a1.Intensional and extensional integration and abstraction of heterogeneous databases【J】. Data & Knowledge Engineering,2000;35(3).
  • 9David Gilbert,Michael Schroeder.FURY:Fuzzy unification and resolution based on edit distance[C].In:International Conference on Bioinformatics and Biomedical Egineering,IEEE,2000.
  • 10Pawalk Z. Rough Sets[J]. Int J of Computer and Information Science,1982,11(5): 341-356.

共引文献206

同被引文献58

引证文献8

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部