期刊文献+

基于FP-Growth的入侵检测研究

A Study of Intrusion Detection Based on Algorithm of FP-Growth
下载PDF
导出
摘要 数据挖掘可以利用各种分析工具从海量数据中发现模型和数据间的关系并做出预测。为了解决入侵检测在不降低精度的同时提高检测速度的问题,提高算法的效率,将FP-Growth算法应用于入侵检测系统中,提出对FP-Growth算法改进FP-tree的头表结构并引入关键属性来挖掘原始审计数据中的频繁模式,实验结果表明改进后的算法比传统的关联算法在入侵检测中的应用效果更好。可以看出,将FP-Growth算法应用于入侵检测中是可行的。 Data mining can find the relation between pattern and data from the large number of data and the forecast will be made. In order to adapt to the real- time nature of the intrusion of testing requirements,and enhance the efficiency of algorithms,presented to the b-P- Growth algorithms that improves FP- tree table structures and the introduction of key attributes to intrusion detection system. The experimental results showed improved algorithm has better results than traditional association algorithm in the application of intrusion detection, Accordig to the result,FP- Growth algorithm is useful to intrusion detection.
作者 孙志强
出处 《计算机技术与发展》 2006年第12期233-236,共4页 Computer Technology and Development
关键词 入侵检测 关联规则 FP-GROWTH算法 数据挖掘 intrusion detection association rules FP - Growth algorithm data mining
  • 相关文献

参考文献7

二级参考文献21

  • 1R Agrawal,T Imielinski,A Swami. Mining Association Rules Between Sets of Items in Large Databases[C].In:Proceedings of the ACM SIGMOD Conference on Management of data,Downloaded from http://www.cs.brandeis.edu/~cs227b/papers/decision-dataminingoverviewsigmod93.pdf, 1993: 207 ~216
  • 2R Agrawal. Ramakrishnan Srikant. Fast Algorithms for Mining Association Rules. IBM Almaden Research Center, 1996
  • 3S Brin,R Motwani,C Silverstein. Beyond market baskets:generlizing association rules to correlations[C].In:Proceedings of the ACM SIGMOD, 1996: 255~276
  • 4Buchanan B G,Mitchell T.Model-directed Learning of Production Rules. Waterman D A,Hayes-Roth F eds.Pattern Directed Inference Systems,Academic Press, 1978:297~312
  • 5[1]J Han,Micheline Kamber. Data Mining:Concepts and Techniques[M].Morgan Kaufmann Publishers,2001
  • 6[2]R Agrawal,R Srikant. Fast algorithms for mining association rules[C].In: VLDB ′94,1994: 487~499
  • 7[3]R Agrawal ,T Imielinski ,A Swami. Mining association rules between sets of items in large databases[C].In:Proc 1993 ACM-SIGMOD Int Conf Management of Data (SIGMOD′93), Washington, DC, 1993-05:207~216
  • 8[4]J S Park ,M S Chen,P S Yu. An effective hash-based algorithm for mining association rules[C].In:SIGMOD'95,1995:175~186
  • 9[5]J Han,J Pei,Y Yin. Mining frequent patterns without candidate generation[C].In: Proc ACM SIGMOD, 2000:1~12
  • 10[6]C A Shaffer. Data Structures and Algorithm Analysis[M].Prentice Hall,1997

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部