摘要
用小波系数范数代替OSV模型中的H-1范数,得到了一个新的全变差去噪模型.通过求解该模型的极小化,推导出其相应的Euler-Lagrange方程为小波域中的二阶非线性偏微分方程.根据有界变差泛函中的Poincare不等式和下半连续性,证明了该模型极小值的存在性.数值实验表明新模型在有效去噪的同时可以保持较好的视觉质量.
A novel variational denoising model is obtained by replacing the H^-1-norm by norms of wavelet coefficients in the OSV model. The associated EulevLagrange equation leads to a nonlinear partial differential equation of second order in the wavelet domain. And we also prove the existence theorem of minimizer for the new model by means of Poincare's inequality and the lower semi-continuity of bounded variation functions. Numerical experiments show that the proposed model not only improves the denoising performance significantly, but also can preserve the appealing visual quality of images.
出处
《西安电子科技大学学报》
EI
CAS
CSCD
北大核心
2006年第6期980-984,共5页
Journal of Xidian University