期刊文献+

医学超声图像分割的一种新方法 被引量:4

A New Method for Medical Ultrasonic Image Segmentation
下载PDF
导出
摘要 有效地实现超声图像的分割依然是临床疾病诊断亟待解决的一个难题。本研究将图像树型框架小波变换、尺度共生矩阵、KL变换主分量分析和自组织神经网络聚类相结合应用于医学超声图像,提出一种分割新方法。实验表明,对于不同的医学超声图像,应用本研究方法均可得到比较清晰的分割结果,且显著地提高了分割图像的对比度,这对于固有对比度较低的医学超声图像来说不啻一种很有效的图像分割新方法,为临床诊断提供新的借鉴。 It has been an urgent and tough problem to implement medical ultrasonic image segmentation effectively in clinical disease diagnosis. This paper proposed a new image segmentation method, which integrated the theory of tree- structured frame-wavelet transform, scale co-occurrence matrix (SCM), principal component analysis and self- organizing neural network, and applied them to the clinical ultrasonic image finishing image segmentation. Experiment results showed that clearer segmented images with a high contrast were obtained with the proposed method.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2006年第6期650-655,共6页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(No.30170259 No.30570475 No.60372081) 教育部博士点基金资助项目(20050141025) 辽宁省科学技术基金资助项目(No.2001101057)。
关键词 超声图像分割 树型框架小波变换 尺度共生矩阵 主分量分析 自组织神经网络 medical ultrasonic image segmentation tree-structured frame-wavelet transform scale co-occurrence matrix principal component analysis self-organizing neural network
  • 相关文献

参考文献9

  • 1毕英伟,邱天爽,李小兵,刘颖.医学超声图像分析的研究进展[J].国外医学(生物医学工程分册),2005,28(1):14-19. 被引量:5
  • 2严加勇,庄天戈.医学超声图像分割技术的研究及发展趋势[J].北京生物医学工程,2003,22(1):67-71. 被引量:21
  • 3Windyga PS.Fast Impulsive Noise Removal[J].IEEE Trans.on Image Processing,2001,10(1):173-179.
  • 4Chang T,Kuo CCJ.Texture Analysis and Classification with Tree-Structured Wavelet Transform[J].IEEE Trans.on Image Processing,1993,3(4):429-441.
  • 5Unser M.Texture classification and segmentation using wavelet frames[J].IEEE Trans.on Image Processing,1995,4(11):1549-1560.
  • 6Haralick RM.Statistical and Structural Approaches to Texture[J].Proceedings of the IEEE,1979,67(5):786-804.
  • 7Kohonen T.The self-Organizing Map[J].Proceedings of the IEEE,1990,78(9):1464-1480.
  • 8汪天富,郑昌琼,李德玉,郑翊.基于自组织神经网络的超声心脏图象分割[J].中国生物医学工程学报,2000,19(3):356-358. 被引量:8
  • 9Zhang YJ.A survey on evaluation methods for image segmentation[J].Pattern Recognition,1996,29(8):1335-1346.

二级参考文献21

  • 1[17]Deng J W, Tsui H T. A fast level set method for segmentation of low contrast noisy biomedical images. Pattern Recognition Letters, 2002,23 (1): 161-169
  • 2[1]Chen C M, Lu H H S, Lin Y C. An early vision-based snake model for ultrasound image segmentation. Ultrasound in Med & Biol, 2000,26 (2): 273-285
  • 3[2]Fan L, Braden G A, Herrington D M. Nonlinear wavelet filter for intra-cononary ultrasound images. Proceedings of the 1996 23rd Annual Meeting on Computers in Cardiology, 1996, P41 -44
  • 4[3]AarninkRG, GiesenRJB, HuynenAL, etal. A practical clinical method for method for contour determination in ultrasonographic prostate images. Ultrasound in Med & Biol, 1994, 20 (8): 705 - 717
  • 5[4]Brathwaite P A, Chandran K B, McPherson D D, et al. Lumen detection in human IVUS images using region-growing. Computers in Cardiology, 1996, (9): 37-40
  • 6[5]Mignotte M, Meunier J, Tardif J C. Endocardial boundary estimation and tracking in echocardiographic images using deformable templates and Markov random fields. Pattern Analysis & Application, 2001, (4):256-271
  • 7[7]Lee B, Yan J Y, Zhuang T G. A dynamic programming based algorithm for optimal edge detection in ultrasound images. Proceedings of SPIE, 2001, 4549: 135- 140
  • 8[8]Kass M, Witkin A, Terzopoulos D. Snakes: active contour models.IJCV, 1988, 1 (1): 31-331
  • 9[9]Yoshida H, Keserci B, Casalino D D, et al. Segmentation of liver tumors in Ultrasound Images based on scale-space analysis of the continuous wavelet transform. IEEE international ultrasonics symposium,Oct. 5-8, Sendai, Japan, 1998
  • 10[10]Chen C M, Lu H H S, Lin Y C. An early vision-based snake model for ultrasound image segmentation. Ultrasound in Med & Biol, 2000,26 (2): 273-285

共引文献29

同被引文献67

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部