摘要
给出第1类stirling数与Bernou lli数的解析表示式S1(n,n)=1 n∈N+n-1S1(n,m)=(-1)n-m∑k2=n-mk1∑k1-1k2=n-m-1k2…∑kn-m-2-1kn-m-1=2kn-m-1∑kn-m-1-1kn-m=1kn-mn,m∈N+,n>mb1=12b2=1n!∑n-1i=1(-1)n-ii+1∑n-1k1=n-ik1∑k1-1k2=n-i-1k2…∑kn-i-2-1kn-i-1=2kn-i-1∑kn-i-1-1kn-i=1kn-i+1(n+1)!n∈N+,n≥2因此解决了它们的计算问题。
This article shows analytic representative of the First kind Stirling Number and Bernoulli Number S1(n,n)=1,n∈N^+ S1(n,m)=(-1)^n-m ^n-1∑k2=n-m k1 ^k1-1∑k2=n-m-1 k2… k(n-m-2)^-1∑ k(n-m-1)=2 k(n-m-1) k(n-m-1)^-1 ∑k(n-m)=1 k(n-m) n,m,∈N^+,n〉m, b1=1/2 b2-1/n1 ^n-1∑i=1 (-1)^n-i/i+1 ^(n-1)∑ k1=n-i k1 k1^-1∑ k2=n-i-1 k2… k(n-i-2)^-1∑ k(n-i-1)=2 k(n-i-1) k(n-i-1)^-1 ∑ k(n-i)=1 k(n-i)+1/(n+1)! n∈N^+.n≥2,Thus their calculation probl.ems have been solved.
出处
《嘉应学院学报》
2006年第6期5-7,共3页
Journal of Jiaying University