期刊文献+

金莲花的X射线荧光分析及X射线衍射技术研究 被引量:7

Study on the methods of X-ray fluorescent analysis and X-ray diffraction of Flos Trollii
下载PDF
导出
摘要 目的:建立金莲花中药材内在质量的快速鉴别方法。方法:采用 X 射线荧光分析方法(XRF)和粉末 X 射线衍射技术(PXRD)对5个不同来源及产地金莲花样品的元素含量和整体特征进行了测定和分析。结果:5个样品中钾和钙元素含量均较高;而微量元素含量差异较大;道地品中富含钾元素的晶态物质含量最高,晶粒尺寸却最小,约40 nm。结论:首次在金莲花中发现了富钾相。2种方法的联合应用不仅可以表达和鉴别药材的产地特征及识别其优劣;也能用于可制成粉末样品的中成药的鉴别、表征和质量控制,而且在质量标准的研究及制定方面具有广阔应用前景。 Objective:The elemental compositions of Flos Trollii were analyzed quantitatively with modern apparatus Methods.The five samples of Flos Trollii from different producing areas were analyzed and characterized with X- ray fluorescent and X - ray powder diffraction analysis. Results: The contents of kalium and calcium all are higher in the five samples,the difference of the contents of microelement being obvious in each sample, the content of biologic crystalloid being the highest and the size of minicrystal being the least (approximate 40 nm) in the local herb. Conclusions: First discovered the contents of biologic - crystalloid kalium, the united fashion of the method of X - ray powder diffraction and the method of X - ray fluorescent analysis can express and distinguish the producing area characters and quality of medicinal materials, can identify and characterize the patent medicine and can apply in products' appraisal norm research.
出处 《药物分析杂志》 CAS CSCD 北大核心 2006年第11期1623-1625,共3页 Chinese Journal of Pharmaceutical Analysis
关键词 金莲花 质量鉴别 X射线荧光分析 X射线衍射 Flos Trollii quality identification X - ray diffraction X - ray fluorescent analysis
  • 相关文献

参考文献8

二级参考文献28

  • 1宋冬梅,孙启时.阿尔泰金莲花化学成分的研究(Ⅰ)[J].中国药物化学杂志,2004,14(4):233-235. 被引量:32
  • 2聂晶,田颂九,王国荣.中药指纹图谱的研究现状[J].中草药,2000,31(12):881-884. 被引量:68
  • 3吴利霞,黄金祥,崔同.金莲花植物成分及其药剂的研究进展[J].河北林果研究,2004,19(4):392-396. 被引量:10
  • 4中华人民共和国药典委员会.中华人民共和国药典[M].广州:广东科学技术出版社,1977,1985.144,70.
  • 5Woo Y-A, Kim H-J, Cho J, et al. Discrimination of herbal mecidines according to geographical origin with near infrared reflectance spectroscopy and pattern recognition techniques. Journal of Pharmacceutical and Biomedical Analysis, 1999, 21:407~413
  • 6Woo Y-A, Cho C-H, Kim H-J, et al. Classification of cultivation years of Ginseng using near-infrared (NIR) reflectance spectroscopy. Near Infrared Analysis, 2000,1:19~22
  • 7Vapnik V. The Nature of Statistical Learning Theory. NY: Springer-Verlag, 1995
  • 8Guyon I, Weston J, Barnhill S, et al. Gene selection for cancer classfication using support vector machines. Machine Learning, 2002, 46(1): 389~422
  • 9Zhang X, Ke H. ALL/AML cancer classification by gene expression data using SVM and CSVM approach. Genome Informatics, 2000, 237~239
  • 10Ramaswamy S, Tamayo P, Riflin R, et al. Multiclass cancer diagnosis using tumor gene expression signatures. PNAS, 2001, 98(26): 15149~15154

共引文献56

同被引文献84

引证文献7

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部