期刊文献+

基于SQL的频繁项目集的研究 被引量:4

Research on frequent itemsets based on SQL
下载PDF
导出
摘要 Apriori算法是关联规则中挖掘频繁项目集的典型算法。在Apriori算法的基础上,利用关系数据库管理系统的强大功能和SQL语言操作简单,效率高的特点,提出了基于SQL的Apriori算法。该算法实现简单快速,可有效缩小扫描数据库的大小。将该算法应用于经过数据预处理的Web日志文件数据库,实验结果显示该算法是有效的。 Apriori algorithm is a typical algorithm of mining frequent itemsets for association mle. Based on the apriori algorithm, using powerful functions of relation database management system and simple operation and high efficiency of SQL, an apriori algorithm based on SQL is proposed. Implementation of the algorithm are simple and fast and the scan database is reduced effectively. The algorithm applies to web log file database which has been data-preprocessed, and the result indicates that the algorithm is effective.
出处 《计算机工程与设计》 CSCD 北大核心 2006年第23期4494-4497,共4页 Computer Engineering and Design
关键词 数据挖掘 关联规则 频繁项目集 SQL 数据预处理 Web日志文件 data mining association role frequent itemsets structured query language data prepr- ocessed web log file
  • 相关文献

参考文献9

二级参考文献28

  • 1苏毅娟,严小卫.一种改进的频繁集挖掘方法[J].广西师范大学学报(自然科学版),2001,19(3):22-26. 被引量:10
  • 2Jhan M Kamber著 范明 孟小峰等译.数据挖掘:概念与技术[M].北京:机械工业出版社,2001..
  • 3Lin, Dao-I,Kedem Z M. Pincer-Search: a new algorithm for discovering the maximun frequent set. In : Schek. H. J. , Saltor, F. ,Ramos,I. ,et al,eds. Proc. of the 6th European Conf. on Extending Database Technology. Heidelberg: Springer-verlag, 1998. 105-119.
  • 4Fayyad U, Stolorz P. Data mining and KDD: Promise and challenges. Future Generation Computer Systems, 1997,13 : 99- 115.
  • 5Shen Li, Shen Hong, Cheng Ling. New algorithms for efficient mining of association rules [J]. Information Sciences, 1999, 118(4) :251-268.
  • 6Han J.W.,Kamber M..Data Mining:Concepts and Techniques.Beijing:Higher Education Press,2001.
  • 7Agrawal R.,ImielinSki T.,Swami A..Mining association rules between sets of items in large database.In:Proceedings of the ACM SIGMOD International Conference on Managementof Data,Washington,DC,1993,2:207-216.
  • 8Srikant A.R..Fast algorithms for mining association rules.In:Proceedings of the 20th International Conference Very Large Data Bases(VLDB’94).Santiago,Chile,1994,487-499.
  • 9Han J.W.,Pei J.,Yin Y..Mining partial periodicity using frequent pattern tree.Simon Fraser University:Technical Report TR-99-10,1999.
  • 10Cheung D.,Han J.W.,Ng V.,Wong V..Maintenance of discovered association rules in large databases:An incremental updating technique.In:Proceedings of the 12th International Conference on Data Engineering(ICDE),New Orleans,Louisiana.1996.106-114.

共引文献287

同被引文献18

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部