摘要
提出了一种全新的遗传算法,并结合组合优化领域的典型难题——TSP问题,设计了编码、交叉及变异等遗传算子,克服了传统遗传算法的编码及遗传操作未能够充分反映及利用遗传信息的缺陷,较大程度上降低了传统遗传搜索中存在的盲目性,搜索速度得到明显提高。最后将本遗传算法应用于20个城市的TSP问题求解,计算结果证明了该遗传算法的收敛质量满足要求,收敛速度明显优于许多现有的算法。
A new genetic algorithm is proposed to solve the problem of TSP (traveling salesman problem). The genetic operators of coding and crossover and mutation are redesigned, and the drawbacks of that the coding and genetic operations of SGA could not fully reflect the genetic information are overcomed, and the randomicity of traditional genetic search is greatly reduced. The experimental results show the new GA has great advantage over many existing genetic algorithms.
出处
《计算机工程与设计》
CSCD
北大核心
2006年第23期4579-4580,4603,共3页
Computer Engineering and Design
关键词
遗传算法
TSP
组合优化
NP
全局搜索算法
人工智能
非线性问题
自适应搜索
genetic algorithm
TSP
combinatorial optimization
NP
global searchingalgorithm
artificial intelligence
non-linear
adaptive algorithm