摘要
该文在有关相应线性算子特征值的条件下,讨论非线性(k,n-k)共轭边值问题允许h(x)在x=0和x=1奇异.利用锥上的不动点指数理论获得了正解和多重正解的存在性.
Nonlinear (k, n - k) conjugate boundary value problem
{(-1)^n-kφ^(n)(x)=h(x)f(φ(x)),0〈x〈1,n≥2,0〈k〈n,
φ^(i)(0)=φ^(j)(1)=0,0≤i≤k-1,0≤j≤n-k-1.
is considered under some conditions concerning the eigenvalues of relevant linear operator, h(x) is allowed to be singular at x = 0 and x = 1. The existence of positive solutions and multiple positive solutions is obtained bv means of fixed point index theory on cone.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2006年第6期889-896,共8页
Acta Mathematica Scientia
基金
国家自然科学基金(10371013
10371066)资助
关键词
共轭边值问题
正解
锥
不动点指数
Conjugate boundary value problem
Positive solution
Cone
Fixed point index.