期刊文献+

一种基于网络的入侵检测模型及其实现 被引量:4

A New Model and Implementation of Network Intrusion Detection
下载PDF
导出
摘要 在入侵检测CIDF体系结构基础上,提出了基于网络的二层式多数据包分析入侵检测模型.这一模型中,事件分析器对当前事件分两层进行处理:先将当前事件结合历史事件进行关联分类,找出与当前事件关联紧密的历史事件;然后对包含当前事件的这一类关联事件进行回归分析,最终发现潜在的协同攻击和分布式入侵行为.仿真试验说明该算法模型能够检测出传统入侵检测系统难以发现的分布式入侵行为. Based on intrusion detection common intrusion detection framework(CIDF) architecture,a new network intrusion detection model of multi-data packages analysis was presented. In this model current affair was transacted by two steps through affair analyzer: First, we associated the current data packets with historical data packets, processed a clustering analysis and found out the historical data packets that were closely associated with current data packets; Then, we used Multiplayer Forward Neural Network to process a regression analysis to data packets,and obtained the results of intrusion detection. The simulation experimentation has proved that this model can check up the distribute intrusion affairs that is difficult to discover on traditional intrusion detection system(IDS).
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第6期119-122,共4页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金重点资助项目(70631004)
关键词 回归分析 凝聚聚类 数据挖掘 网络入侵检测 zregression analysis agglomerate clustering data mining network intrusion detection(NID)
  • 相关文献

参考文献12

  • 1MUKHERJEE B,HEBERLEIN T L,LEVITT K N. Network intrusion detection[J ]. IEEE Trans on Network, 1994,8(3) :26 - 41.
  • 2KIM B J, KIM I K. Kernel based intrusion detection system[C]//Proc of 8th IEEE Int Syrup on Computers and Communication. Kemer- Antalya, 2003:232 - 237.
  • 3WANG L N, YU G, WANG G R, et al.Method of evolutionary neural network- based intrusion detection[C]//Proc of IEEE Int Conferences on Info- tech and Info-net. Beijing, 2001:13-18.
  • 4VIGNA G, ROaN W, VISHAL K, et al.A stareful intrusion detection system for World-Wide Web servers[C]//Proc of 19th IEEE Int Conferences on Computer Security Applications.Las Vegas, 2003:34- 43.
  • 5WANG J X, WANG Z Y, DAI K. A network intrusion detection system based on the artificial noural networks[C]//Proc of 3rd IEEE Int Conferences on Information security. Shanghai, 2004:166 - 170.
  • 6LEE W. Real time data mining- based intrusion detection[C]//Proc of DARPA Information Survivability Conference & Exposition Ⅱ. Anaheim, 2001:89- 100.
  • 7LEE W, SALVATORE J S, KUI WM, et al. A Data Mining Framework for Building Intrusion Detection Models[C]//Proc of IEEE Int Syrup on Security and Privacy. Oakland, 1999:120 - 132.
  • 8LEE W, SALVATORE J S, KUI W M. Mining in a data-flow environment: experience in network intrusion detection[C]//Proc of 5th ACM SIGKDD Int Conferences on Knowledge Discovery in Data archive.San Diego, 1999:114- 124.
  • 9PAULA D. An intrusion detection system using ideas from the immune system[C]//Proc of Congress on Evolutionary Computation. Piscataway: IEEE Press, 2004 : 1059 - 1066.
  • 10PILLAI MM,ELOFF J,VENTER HS.An approach to implement a network intrusion detection system using genetic algorithms[C]// Proc of the 2004 annual research conference of the South African institute of computer scientists and information techologists on IT research in developing countries.Stellnbosch ,2004,:221-221.

二级参考文献8

  • 1MUKHERJEE B, HEBERLEIN LT, LEVITT KN. Network intrusion detection[J]. IEEE Network, 1994, 8(3) : 26 -41.
  • 2WANG L, YU G. WANG G, et al. Method of evolutionary neural network-based intrusion detection[ A]. International Conferences on Info-tech and Info-net, ICII 2001[ C]. Beijing. 2001.13 - 18.
  • 3LEE W , STOLFO SJ , MOK KW . A Data Mining Framework for Building Intrusion Detection Models[ A]. IEEE Symposium on Security and Privacy[ C]. 1999. 120 - 132.
  • 4CANNADY J. Neural networks for misuse detection: Initial results[ A]. Proceedings of intrusion detection 98 Conference[ C]. Louvainla-Neuve: IEEE Press, 1998.31 -47.
  • 5HOFMANN A, SCHMITZ C, SICK B, Rule extraction from neural networks for intrusion detection in computer networks Systems[ A].IEEE International Conference on Man and Cybernetics[ C]. 2003.1259 - 1265,
  • 6MUKKAMALA S, JANOSKI G, SUNG A. Intrusion detection using neural networks and support vector machines Neural Networks[ A].Proceedings of the 2002 International Joint Conference on Neural Networks, IJCNN '02[ C]. 2002. 1702 - 1707.
  • 7KANG B-D, LEE J-W, KIM J-H, et al. An intrusion detction system using principal component analysis and time delay neural network[ Z]. Enterprise networking and Computing in Healthcare Industry,HEALTHCOM, 2005.
  • 8WANG J, WANG Z, DAI K. A network intrusion detection system based on the artificial neural networks[ A]. Proceedings of the 3rd international conference on Information security[ C], 2004.

共引文献4

同被引文献16

  • 1许春,李涛,刘孙俊,赵辉,张建华,刘念.基于免疫危险理论的新型网络入侵检测方法研究[J].南京邮电大学学报(自然科学版),2006,26(5):80-85. 被引量:17
  • 2F M Bumet. The clonal selection theory of acquired immunity [ M ]. Cambridge:Vanderbilt University Press, 1959.
  • 3Matzinger Pony. The danger model: a renewed sense of self[ J]. SCIENCE, 2002,296:301 - 305.
  • 4J Kim, P J Bentley. Evaluating Negative Selection in an Artificial Immune System for Network Intrusion Conference [ C ]. Genetic and Evolu - tionary Computation Conference, San Francisco, 2001. 1330 - 1337.
  • 5孙知信,姜举良,焦琳.DDOS攻击检测和防御模型[J].软件学报,2007,18(9):2245-2258. 被引量:34
  • 6Behrouz A Forouzan,Sophia Chung Fegan.TCP/IP协议族[M].谢希仁,译.北京:清华大学出版,2003.165-169.
  • 7Rahman M G, Imai H. Security in wireless communication[J]. Wireless Personal Communications, 2003,22(2):213-228.
  • 8赵军,戴沁芸.移动互联网安全问题探究[C]//2011年全国通信安全学术会议论文集.2011:76-78.
  • 9Behrouz A Forouzan.数据通信与网络[M].北京:机械工业出版社,2006:366-367.
  • 10Mu Beipeng, Chen Xinming, Chen Zhen. A collaborative network security management system in metropolitan area network [ C ]//The 3rd International Conference on Communications and Mobile Computing. 2011:45-50.

引证文献4

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部