期刊文献+

煤与瓦斯突出预报数据关联性的聚类分析 被引量:13

Clustering Analysis for Correlation among Coal and Gas Outburst's Prediction Data
原文传递
导出
摘要 合理地选择突出控制因素是进行突出预测的关键技术之一.首先给出了基于系统聚类的突出预报数据关联性分析方法,通过DB Index准则判断聚类模型的有效性.然后研究了煤与瓦斯突出控制因素的选择规则.最后以平顶山煤矿为例,分析了该矿突出预报数据间的关联性,得到了相应的变量聚类树,并选择了主要的突出控制因素.仿真结果验证了所提出的突出控制因素选择方法的合理性和有效性.图2,表3,参11. Control factors' selection was one of valuable technologies for the prediction of coal and gas outburst. Analysis method for correlation among coal and gas outburst's prediction data, which was based on system clustering algorithm, was presented first. And clustering models' validity was estimated by DB Index criterion. Then selective rules for coal and gas outburst's control factors were studied. At last, taking Pingdingsan coal mine as an example, correlation among outburst's prediction data was counted. And the corresponding regression tree was got. The main control factors of coal and gas outburst were selected. Simulation results illustrate that the proposed method is validity. 2figs., 3tabs., 1 lrefs.
出处 《湖南科技大学学报(自然科学版)》 CAS 北大核心 2006年第4期1-4,共4页 Journal of Hunan University of Science And Technology:Natural Science Edition
基金 高等学校博士学科点专项科研基金资助项目(20050290010)
关键词 煤与瓦斯突出 控制因素 系统聚类算法 DB Index准则 聚类树 coal and gas outburst control factors system clustering algorithm DB Index criterion regression trees
  • 相关文献

参考文献5

  • 1[1]VERIKAS A,BACAUSKIENE M.Feature Selection with Neural Networks[J].Pattern Recognition Letters,2002,23:1 323-1 335.
  • 2[2]QUESTIER F,PUT R,COOMANS D,et al.The Use of CART and Multivariate Regression Trees for Supervised and Unsupervised Feature Selection[J].Chemometrics and Intelligent Laboratory Systems,2005,(76):45-54.
  • 3[3]FRANCESCO MARCELLONI.Feature Selection Based on a Modified Fuzzy C-means Algorithm with Supervision[J].Information Sciences,2003,151:201-226.
  • 4[7]SERGIOS THEODORIDIS,KONSTANTINOS KOUTROUMBAS.Pattern Recognition (Second Edition)[M].Beijing:China Machine Press,2003.
  • 5[8]CASIMIR R,BOUTLEUX E,CLERC G,et al.The Use of Features Selection and Nearest Neighbors Rule for Faults Diagnostic in Induction Motors[J].Engineering Applications of Artificial Intelligence,2006,(19):169-177.

同被引文献78

引证文献13

二级引证文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部