期刊文献+

基于微粒群算法优化的微硅加速度传感器动态补偿研究 被引量:17

Study on dynamic compensation method for micro-silicon accelerometer based on swarm optimization algorithm
下载PDF
导出
摘要 本文提出了一种基于微粒群(PSO)算法优化的微硅加速度传感器动态误差补偿器的设计方法。该方法无需事先已知微硅加速度传感器的动态特性,可根据传感器以及参考模型对输入激励响应的实测数据,通过PSO算法的优化学习得到补偿器的参数。传感器的输出经过补偿器后,能够克服由动态特性引起的测量误差。最后,通过实验验证了该方法的有效性。 A design method to optimize the dynamic errors of the compensator for micro-silicon accelerometer is presented, which is based on particle swarm optimization (PSO). With this method a dynamic compensator can be realized without knowing the dynamic characteristics of the sensor, the parameter of the compensator is optimized using PSO algorithm according to the measurement data of the step response of the sensor and the reference model. After the sensor output signal is processed by the compensator, the dynamic measurement errors are reduced. Experimental results show that the method is effective.
作者 刘清 曹国华
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2006年第12期1707-1710,共4页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(60474079) 江苏省高校自然科学基金(06KJD520099)资助项目
关键词 微硅加速度器 动态误差 补偿 参数优化 微粒群算法 micro-silicon accelerometer dynamic error compensation parameter optimization particle swarm optimization
  • 相关文献

参考文献8

  • 1才海男,周兆英,李勇,张文栋.加速度传感器的动态特性软件补偿方法研究[J].仪器仪表学报,1998,19(3):263-267. 被引量:27
  • 2BRIGNELL J B.Software techniques for sensor compensation[J].Sensors&Actuators,1991,25(27):37-41.
  • 3俞阿龙,黄惟一.基于改进遗传神经网络的微硅加速度传感器动态补偿研究[J].东南大学学报(自然科学版),2004,34(4):455-458. 被引量:5
  • 4YEARY M B,GRISWOLD N C.Adaptive IIR filter design for single sensor applications[J].IEEE Transaction on Instrumentation and Measurement,2002,51(2):259-267.
  • 5MEHDI JAFARIPANAH,AL-HASHIMI B M,WHITE N M.Application of analog adaptive filters for dynamic sensor compensation[J].Transaction on instrumentation and measurement,2005,54(1):245-251.
  • 6KENNEDY J,SPEARS W M.Matching algorithms to problems:an experimental test of the particles warm and some genetic algorithms on the multimodal problem generator[A].Proc IEEE Int Confon Evolutionary Computation[C].Anchorage,1998:78-83.
  • 7PARSOPOULOS K E,VRAHATIS M N.Recent approach to global optimization problems through particle swarm optimization[J].Neural Computing,2002,1(2):235-306.
  • 8刘清.减小噪声干扰的热敏电阻传感器动态测量误差补偿[J].计量学报,2005,26(2):111-114. 被引量:9

二级参考文献19

  • 1刘清.神经网络和遗传算法相结合实现非线性传感特性的线性化[J].南京师范大学学报(工程技术版),2002,2(3):11-15. 被引量:4
  • 2陈波,胡念苏,周宇阳,申,赵瑜.汽轮机组监测诊断系统中虚拟传感器的数学模型[J].中国电机工程学报,2004,24(7):253-256. 被引量:24
  • 3于盛林,刘文波.用于减小随机误差的中值-模糊滤波器[J].计量学报,1995,16(4):297-300. 被引量:11
  • 4黄长艺,计量技术,1981年,5期,226页
  • 5Habtom R, Litz L. Virtual sensors based on recurrent neural networks [ A ]. Proc 1998 IEEE Int Conf on Control Applications[C]. Trieste, Italy: 1998, 163 - 167.
  • 6Almodarresi Yasin S M T, White N M. Application ofartificial neural networks to intelligent weighing systems[ A].IEEE Proceedings of Science, Measurement and Technology[C]. New York: 1999, 265- 269.
  • 7Massicotte D, Megner B M. Neural-Network-Based Method of Correction in a Nonlinear Dynamic Measuring System [ J ].IEEE Trans on I M, 1999, 49(4): 1641 - 1645.
  • 8Hietanen P, Neuvo Y. FIR-median hybrid filters with predictive FIR substructures [ J ]. IEEE Trans on Acoust Speech Signal Processing, 1988, 36: 892-899.
  • 9d' Almeida L A L I, et al. A hysteretic model for a vanadium dioxide transition-edge microbolometer[ J]. IEEE Trans on I M, 2001, 50(4): 1030 - 1035.
  • 10d' Almeida L A L l, et al. Nonlinear Inverse Filter for Measurement of Thermal Hysteretic[ A]. Proc 19th IEEE Int Conf on Instrumentation and Measurement Technology [ C ].Anchorage, Alaska, USA: 2002, 1419- 1423.

共引文献38

同被引文献116

引证文献17

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部