期刊文献+

磁约束电感耦合等离子体增强溅射沉积Co掺杂ZnO薄膜及其光学特性 被引量:3

Optical Properties of Co-doped ZnO Film Prepared by Sputtering Deposition in a Magnetic Inductively Coupled Plasma
下载PDF
导出
摘要 采用磁约束电感耦合等离子体增强溅射法(ICP-PVD)在Si(100)和石英玻璃衬底上沉积了Zn0.95Co0.05O薄膜。XRD谱显示薄膜具有较强的(002)衍射峰,表明Zn0.95Co0.05O薄膜为c轴择优取向生长;透过光谱显示Zn0.95Co0.05O薄膜具有良好的透过性,其在可见光和红外波段的平均透过率大于80%,吸收光谱表明Co2+取代了Zn2+处于四配位晶体场中;喇曼光谱证明Zn0.95Co0.05O薄膜具有良好的六方纤锌矿结构;室温PL谱测量发现在可见光的蓝光波段和绿光波段存在较宽的发光带,却没有发现本征的近紫外光发射,这是由于Co掺杂后引入较多的缺陷导致的。 The semiconductor ZnO has grained substantial interests in the research community in part because of its wide direct band gap (3.3 eV) and large exciton binding energy (60 meV). It is a well-known piezoelectric and electro-optic material with potential applications such as optoelectronic and luminescent devices as well as chemical sensors. Even though the research focusing on ZnO goes back to several decades, one of the renewed interests is fueled by the observation of ferromagnetic behavior in transition metals doped ZnO which is called diluted magnetic semiconductors (DMS). DMS could be served as ideal material for exploiting spin in addition to charge in semiconductor devices. Much attention has been paid to the magnetic properties of ZnO- based DMS. In this paper we focused on the optical properties of Co-doped ZnO films. Highly (002) orientated Zn0.95Co0.05O films were deposited on Si (100) substrate using inductively coupled plasma enhanced physical vapor deposition (ICP-PVD) with magnetic confinement, X-ray diffraction pattern and typical Raman spectrum show that Zn0.95Co0.05O film has a wurtzite structure. Transmittance spectrum indicates that the Zn0.95Co0.05O film has an average transparency of over 80% in the visible and infrared wavelength. The band gap of ZZn0.95Co0.05O film (3.11 eV) is less than that of pure ZnO, which is due to sp-d exchange interactions between the band electrons in ZnO and the localized d electrons of the Co^2+ ions. Three obvious absorption peaks around 660,615 and 560 nm are found. They are ascribed to derive from d-d transitions of tetrahedrally coordinated Co^2 + and attributed to the ^4A2 (^4F)→^2E ( ^2G), ^4A2 (64F) →^4T1 (^4P), and ^4A2(^4F) →^ 4A1 (^4G) transitions. The photoluminescence spectrum shows broad blue and green emission from the Zn0.95Co0.05O film at room temperature. On the other hand, no luminescence is found in the ultraviolet region near 380 nm.
出处 《发光学报》 EI CAS CSCD 北大核心 2006年第6期953-957,共5页 Chinese Journal of Luminescence
基金 上海市科委纳米专项基金资助项目(0452nm071)
关键词 ZNO薄膜 CO掺杂 溅射沉积 光学特性 ZnO thin film Co-doped sputtering deposition optical properties
  • 相关文献

参考文献21

  • 1Pearton S J,Norton D P,Ip K,et al.Recent progress in processing and properties of ZnO[J].Prog.Mater.Sci.,2005,50(3):293-340.
  • 2叶志镇,张银珠,徐伟中,吕建国.ZnO薄膜p型掺杂的研究进展[J].无机材料学报,2003,18(1):11-18. 被引量:21
  • 3Ohno H.Making nonmagnetic semiconductors ferromagnetic[J].Science,1998,281(5379):951-956.
  • 4Dietl T,Ohno H,Matsukura F,et al.Zener model description of ferromagnetism in zinc-blende magnetic semiconductors[J].Science,2000,287(5455):1019-1022.
  • 5Parmanand S,Amita G,Rao K V,et al.Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO[J].Nat.Mater.,2003,2:672-677.
  • 6Sato K,Yoshida H K.Stabilization of ferromagnetic states by electron doping in Fe-,Co-or Ni-doped ZnO[J].Jpn.J.Appl.Phys.Lett.,Part 2,2001,40(4A):L334-336.
  • 7范秋林,赵红雨,宋力昕,张涛,胡行方.磁约束电感耦合等离子体增强反应溅射沉积nc-TiN/a-Si_3N_4纳米复合薄膜[J].无机材料学报,2004,19(5):1080-1086. 被引量:2
  • 8王卿璞,张德恒,马洪磊,张兴华,张锡健.射频磁控溅射法制备ZnO薄膜的绿光发射[J].发光学报,2004,25(3):291-294. 被引量:14
  • 9张源涛,李万程,王金忠,杨晓天,马艳,殷宗友,杜国同.射频磁控溅射ZnO薄膜的结构和光学特性[J].发光学报,2003,24(1):73-75. 被引量:11
  • 10Bouloudenine M,Viart N,Colis S,et al.Antiferromagnetism in bulk Zn1-xCoxO magnetic semiconductors prepared by the coprecipitation technique[J].Appl.Phys.Lett.,2005,87(5):052501-052503.

二级参考文献154

  • 1[1]Kobayashi A, Sankey O F, Dow J D. Phys. Rev. B, 1983, 28(2): 946-956.
  • 2[2]Kasuga M, Ogawa S. Jpn. J. Appl. Phys., 1983, 22(5): 794-798.
  • 3[3]Jin B J, Bae S H, Lee S Y, et al. Mater. Sci. Eng. B, 2000, 71(1-3): 301-305.
  • 4[4]Van de Pol F C M. Ceram. Bull., 1990, 69(8): 1959-1963.
  • 5[5]Kanai Y. Jpn. J. Appl. Phys., 1990, 29(8): 1426-1430.
  • 6[6]Kanai Y. Jpn. J. Appl. Phys., 1991, 30(9A): 2021-2022.
  • 7[7]Kanai Y. Jpn. J. Appl. Phys., 1991, 30(4): 703-707.
  • 8[8]Nicoll F H. Appl. Phys. Lett., 1966, 9(1): 13-15.
  • 9[9]Bagnall D M, Chen Y F, Zhu Z, et al. Appl. Phys. Lett., 1997, 70(17): 2230-2232.
  • 10[10]Zu P, Tang Z K, Kawasaki M, et al. Solid State Comunications, 1997, 103(8): 459-463.

共引文献99

同被引文献50

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部