期刊文献+

挖掘关联规则中对Apriori算法的一个改进 被引量:2

An Improved Apriori Algorithm for Mining Association Rules
下载PDF
导出
摘要 针对关联规则中的Apriori算法进行研究,提出了Apriori-B新算法,此算法只需要对交易数据库进行1次搜索,能大量减少I/O次数,且内存开销适中,提高了数据挖掘的效率,具有一定的实用性. This paper provides a survey of the study in association rule generation. It presents an Apriori-B algorithm. The method only needs one pass over the database and reduce I/O overheads greatly. Its memory usage is mode rate. It has raised datamining the efficiency, and certain practicality.
出处 《湖南城市学院学报(自然科学版)》 CAS 2006年第4期67-69,共3页 Journal of Hunan City University:Natural Science
关键词 数据挖掘 关联规则 候选项集树 频繁项集 APRIORI算法 Datamining association rules candidate itemsets tree large itemsets apriori algorithm
  • 相关文献

参考文献5

二级参考文献21

  • 1R. Agrawal, T. Imielinski, A. Swami. Mining association rules between sets of items in large databases. ACM SIGMOD Int'l Conf. Management of Data, Washington, D. C., 1993.
  • 2Han J, Kamber. MData Mining: Concepts and Techniques.Beijing: High Education Press, 2001.
  • 3B. Goethals. Survey of frequent pattern mining. Helsinki Institute for Information Technology, Technical Report, 2003.
  • 4R. Agrawal, R. Srikant. Fast algorithm for mining association rules. The 20th Int'l Conf. VLDB, Santiago, Chile, 1994.
  • 5M. Houtsma, A. Swami. Set-oriented mining for association rules in relational databases. In: Yu P., Chen A, eds. Proc. Int'l Conf. Data Engineering. Los Alamitos, CA: IEEE Computer Society Press, 1995. 25~33.
  • 6A. Savasere, E. Omiecinski, S. Navathe. An efficient algorithm for mining association rules. The 21st Int' l Conf. VLDB, Zurich,Switzerland, 1995.
  • 7J. Han, Y. Fu. Discovery of multiple-level association rules from large databases. The 21st Int'l Conf. VLDB, Zurich,Switzerland, 1995.
  • 8R. Bayardo. Efficiently mining long patterns from databases. In:L. M. Haas, A. Tiwary, eds. Proc. ACM SIGMOD Int'l Conf.Management of Data. New York: ACM Press, 1998. 85~93.
  • 9Lin, Dao-I, Z. M. Kedem. Pincer-Search: A new algorithm for discovering the maximum frequent set. In: H. J. Schek, F.Saltor, I. Ramos et al. eds. Proc. 6th European Conf.Extending Database Technology. Berlin: Springer-Veriag, 1998.105~119.
  • 10D.W. Cheung, J. Han, V. T. Ng, et al. Maintenance of discovered association rules in large databases: An incremental updating technique. The 12th Int'l Conf. Data Engineering, New Orleans, Louisiana, 1996.

共引文献85

同被引文献8

  • 1程玉胜,邓小光,江效尧.Apriori算法中频繁项集挖掘实现研究[J].计算机技术与发展,2006,16(3):58-60. 被引量:16
  • 2曾孝文.关联规则数据挖掘方法的研究[J].计算机与现代化,2006(9):90-92. 被引量:27
  • 3陈安,陈宁,周龙骧.数据挖掘技术与应用[M].北京:科学出版社,2006.
  • 4JiaweiHanJianPei,YiwenYin.Miningfrequentpattemswith- outcandidategeneration[J].SI GMOD, 2000.1-12.
  • 5Zaki M J , Hsiao C-J . CHARM : An Efficient Algorithm for Closed Association Rules Mining. Technical Report 99-10. Com- puter Science Department of Pensselaer Polytechnic Institute , 1999.
  • 6Zaki M J . Generating Non2redundant Association Rules // Proc. of the 6th ACM slGKDD Int'l Conf. on Knowledge Dis- covery and Data Mining. 2000:34-43.
  • 7Banks J ,Bennamoun M. A const mint to improve t he reliability of stereo matching using t he rank t ransform //IEEE Internation- al Conference. Vol. 06,1999.
  • 8Jiaweil-lan, Jian Pei, Yiwen Yin. Miring frequent pottern swithour candidate generation[J]. SIGMOD,2000.1-12.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部