期刊文献+

溶液电位及堆结构影响次生硫化铜矿生物堆浸的动力学 被引量:14

Kinetics of secondary copper sulfide heap bioleaching concerning potential and heap constitution
下载PDF
导出
摘要 基于堆中溶液Fe3+与Fe2+的浓度比、颗粒空隙度、颗粒半径与各化学反应组分对次生硫化铜矿生物堆浸的影响,建立堆浸过程硫化矿细菌氧化反应速率动力学模型。计算与实验结果表明:模型仿真结果与实际结果较符合;堆浸过程次生硫化铜矿(辉铜矿)的氧化分为2个阶段,其中,辉铜矿反应步骤Ⅰ受溶液Fe3+浓度控制,随着Fe3+浓度增加,反应速率加快;反应步骤Ⅱ较反应步骤Ⅰ慢,为浸出反应的限制性步骤,Fe3+与Fe2+的浓度比是影响该反应步骤的关键因素。由于受扩散的限制,反应物颗粒粒径的增大导致浸出速率下降,但粒径过小时浸出率提高不明显。当喷淋强度由3.47/(m2.h)增加到69.00/(m2.h)时,浸出率逐渐下降,说明喷淋强度过大时,造成空隙间流体与颗粒孔道流体间界面剪切力过大,不利于物质传输与交换;当堆过高时,堆中离子的传输受阻,不利于次生硫化铜矿的浸出。 Based on the concentration ratio of ferric to ferrous, ore particle interstice, ore particle size, heap construction and other chemical components, the kinetic model of the secondary copper heap bioleaching was proposed. The results show that during bioleaching the chalcocite decomposed by two stages, the stage Ⅰ is controlled by the concentration of ferric, with the increase of ferric concentration the oxidation rate of chalcocite is enhanced. The rate of stage Ⅱis slower than that of the stage I and it acts as the confining stage, and theconcentration ratio of ferric to ferrous influences the oxidation rate at this stage. By the diffusion confining of substance, the size increase of sulfide ore particle could slow down the oxidation rate, but too small size has not evident effect on improving the reaction rate. When the irrigating intensity increases from 3.47/(m^2·h) to 69.00/(m^2·h), the reaction rate shows a gradual decrease, and the excessively high irrigating density would result in the high shearing strength of the solution between ore space and particle hole. The great heap height would also hamper the reaction components transfer and slow down the leaching rate.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第6期1087-1093,共7页 Journal of Central South University:Science and Technology
基金 国家重点基础研究发展规划项目(2004CB619205) 国家自然科学基金资助项目(50204001)
关键词 生物冶金 细菌浸出 堆浸 次生硫化铜矿 溶液电位 动力学 biohydrometallurgy bioleaching heap leaching secondary sulfide solution potential kinetics
  • 相关文献

参考文献18

  • 1Mooiman M B, Sole K C, Kinneberg D J. Challenging the traditional hydrometallurgy curriculum: An industry perspective[J]. Hydrometallurgy, 2005, 79(2): 80- 88.
  • 2Habashi F. A short history of hydrometallurgy[J].Hydro-metallurgy,2005, 79(1) : 15 - 22.
  • 3Brierley J A, Brierley C I. Present and future commercial applications of biohydrometallurgy [J]. Hydrometallurgy, 2001, 59(2) : 288 - 289.
  • 4Ehrlieh H L. Past, present and future of biohydrometallurgy[J]. Hydrometallurgy, 2001, 59(2): 127-184.
  • 5YANG Song-rong, XIE Ji-yuan, QIU Guan-zhou, et al. Research and application of bioleaching and biooxidation technologies in China[J]. Minerals Engineering, 2002, 15(5): 361-363.
  • 6Akcil A. Potential bioleaching developments towards commercial reality [J ]. Minerals Engineering, 2004,17(8) : 477 - 480.
  • 7Brierley C L. Bacterial succession in bioheap leaching[J]. Hydrometallurgy, 2001, 59(2): 249- 255.
  • 8Lizama H M. A kinetic description of percolation bioleaching[J]. Minerals Engineering, 2004, 17(1): 23-32.
  • 9Sidborn M, Casas J, Martinez J. Two-dimensional dynamic model of a copper sulphide ore bed[J]. Hydrometallurgy, 2003, 71(1):67-74.
  • 10李宏煦,陈景河,阮仁满,王淀佐.福建紫金矿业股份有限公司硫化铜矿生物堆浸过程[J].有色金属,2004,56(41):66-69. 被引量:16

二级参考文献109

  • 1王淀佐.生物工程与矿物提取技术[A]..1998中国科学技术前沿(中国工程院版)[C].北京:高等教育出版社,1999.155.
  • 2Norris P R, Kelly D P. Dissolution of pyrite (FeS2) by pure and mixed cultures of some aeidophilie bacteria [J]. FEMS Microbiology Letters. 1978. 99:317.
  • 3Tsuchiya H M, Trivedi N C, Schuler M L. Microbial mutualism in ore leaching [J]. Biotechnology and Bioengineering, 1974,16. 991.
  • 4Le Roux N W, Wakerley D S, Hunt S D. Thermophilic Thiobacillus - type bacteria from Icelandic thermal areas [J]. Journal of General Microbiology, 1977, 100:197.
  • 5Brierly C L. Thermophilic micro- organism in extraction of metals from ores [J ]. Development in Industrial Microbiology, 1977, 18:273.
  • 6Norris P R, Marsh R M, Linstrom E B. Growth of mesophilic and thermophilic acidophlic bacteria on sulfur and tetrathionate [J]. Biotechnol Appl Biochem, 1986, 8:318.
  • 7Norris P R, Barr D B. Growth and iron oxidation by moderate thermophiles [J]. FEMS Mierobiol Lett 1985, 28:221.
  • 8Karavaiko G I, Shchetinina E V, Pivoarova T A. Denitrifying bacteria isolation from deposits of sulphide ores [J]. Miikrobiologiya, 1973, 42:128.
  • 9Brock T D, Gustafson J. Ferric iron reduction by sulfur and iron oxidizing bacteria [J]. Applied and Environmental Microbiology, 1976, 32:567.
  • 10Konig H, Skorko R. Glycogen in thermoaeidophlie arehaebaeteria of the genera Sulfolobus, Thermoproteus, Desulfurococcus and Thermococcus [J]. Arch. Mierobiol, 1982, 132:297.

共引文献78

同被引文献113

引证文献14

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部