期刊文献+

多模态函数优化的拥挤聚类遗传算法 被引量:4

Crowding Clustering Genetic Algorithm for Multimodal Function Optimization
下载PDF
导出
摘要 对多模态函数优化问题,分析了各种小生境策略;将拥挤模型与聚类算法相结合,提出了一种拥挤聚类遗传算法.拥挤模型在适应值曲面上形成多个小生境,聚类算法消除了每个小生境内部的基因漂移现象.理论分析证明了算法的收敛性能.数值实例表明,拥挤聚类模型在多极值搜索的数量、质量和精度上都优于拥挤模型与确定性拥挤模型.将拥挤聚类遗传算法应用于国家同步辐射实验室变间距全息光栅的设计,取得了满意的效果.* For muhimodal function optimization problems, this paper analyzes several niching strategies, combines the crowding model with the clustering algorithm, and proposes a crowding clustering genetic algorithm. Crowding model is used to form multiple niches in fitness landscape, while clustering algorithm eliminates genetic drift in each inner niche. Theoretical analysis proves the convergence property of the proposed algorithm. Numerical results indicate that crowding clustering model is superior to both crowding model and deterministic crowding model in quantity, quality and accuracy of multi-optima searching. The crowding clustering genetic algorithm has been applied to the varied-line-spacing holographic grating design in the National Synchrotron Radiation Laboratory, and achieves satisfactory results.
出处 《信息与控制》 CSCD 北大核心 2006年第6期715-720,共6页 Information and Control
基金 安徽省优秀青年科技基金(04042046)
关键词 多模态函数优化 拥挤聚类遗传算法 基因漂移 变间距全息光栅 muhimodal function optimization crowding clustering genetic algorithm genetic drift varied-line- spacing holographic grating
  • 相关文献

参考文献12

  • 1李敏强,寇纪淞.多模态函数优化的协同多群体遗传算法[J].自动化学报,2002,28(4):497-504. 被引量:33
  • 2Sareni B,Krahenbuhl L.Fitness sharing and niching methods revisited[J].IEEE Transactions on Evolutionary Computation,1998,2(3):97~106.
  • 3郭观七,喻寿益.重组的遗传漂移分析[J].软件学报,2003,14(11):1875-1881. 被引量:6
  • 4Thomsen R.Multimodal optmization using crowding-based differential evolution[A].Proceedings of the 2004 Congress on Evolutionary Computation[C].Piscataway,NJ,USA:IEEE,2004.1382~1389.
  • 5Mahfoud S W.Crossover interactions among niches[A].Proceedings of the IEEE Conference on Evolutionary Computation[C].Piscataway,NJ,USA:IEEE,1994.188~193.
  • 6于歆杰,王赞基.适应值共享拥挤遗传算法[J].控制与决策,2001,16(6):926-929. 被引量:6
  • 7Petrowski A.A clearing procedure as a niching method for genetic algorithms[A].Proceedings of the IEEE Conference on Evolutionary Computation[C].Piscataway,NJ,USA:IEEE,1996.798~803.
  • 8Gan J,Warwick K.A genetic algorithm with dynamic niche clustering for multimodal function optimization[A].Proceedings of the IEEE Conference on Evolutionary Computation[C].Piscataway,NJ,USA:IEEE,2001.215~222.
  • 9Ursem R K.Multinational evolutionary algorithms[A].Proceedings of the 1999 Congress on Evolutionary Computation[C].Piscataway,NJ,USA:IEEE,1999.1633~ 1640.
  • 10Singh S.Diffraction gratings:aberrations and applications[J].Optics and Laser Technology,1999,31(3):195 ~218.

二级参考文献21

  • 1[1]Richard K Belew, Michael D Vose. Foundations of Genetic Algorithms 4. San Francisco, Calif: Morgan Kaufmann Publishers, Inc., 1997
  • 2[2]Melanie Mitchell. An Introduction to Genetic Algorithms. Cambridge, Mass: The MIT Press, 1996
  • 3[3]De Jong K A. Genetic algorithms: A 25 year perspective. In: Proceedings of the Fifth International Conference on Genetic Algorithms,Los Altos,CA: Morgan Kaufmann Publishers, 1993
  • 4[4]Mahfoud S W. Crowding and pre-selection revisited. In: Parallel Problem Solving from Nature, Manner R, Manderick B (eds.). Berlin: Springer, 1992. 67~76
  • 5[5]Mengshoel O J, Goldberg D E. Probabilistic crowding: Deterministic crowding with probabilistic replacement. In: Proceedings of the Genetic and Evolutionary Computation Conference 1999 (GECCO-99),Banzhaf W et al.(eds.). San Fransisco, CA: Morgan Kaufmann, 1999. 173~179
  • 6[6]Goldberg D E, Deb K, Horn J. Massive multi-modality, deception, and genetic algorithms. In: Manner R, Manderick B (eds.), Parallel Problem Solving from Nature, Berlin: Springer, 1992. (2):37~46
  • 7[7]Beasley D, Bull D R, Martin R R. A sequential niche technique fo r multi-modal function optimization. Evolutionary Computation, 1993,1(2):101~125
  • 8[8]Harik G. Finding multi-modal solutions using restricted tournament selection. In: Proceedings of the Sixth International Conference on Genetic Algorithms (ICGA 6), Eshelman L J (ed.), San Francisco, CA: Morgan Kaufmann, 1995. 24~3 1
  • 9[9]Miller B L, Shaw M J. Genetic Algorithms with dynamic niche sharing for multi-modal function optimization. In: IEEE International Conference on Evolutionary Computation, Piscataway, NJ: IEEE Press, 1996. 786~791
  • 10[10]Goldberg D E, Wang L. Adaptive niching via co-evolutionary sharing. In Genetic Algorithms in Engineering and Computer Science, Quagliarella et al. (eds.). Chichester: John Wiley and Sons, Ltd. 1997, 21~38

共引文献40

同被引文献22

  • 1伍之前,李本昌,陆铭华,臧忠伟.潜射反舰导弹弹道仿真的建模与实现[J].导弹与航天运载技术,2004(5):35-38. 被引量:3
  • 2何文涛,王基组,张永刚.一种新的提高反舰导弹捕捉概率方法研究[J].舰船科学技术,2004,26(5):46-48. 被引量:4
  • 3解学通,方裕,陈克海,陈晓翔.一种海面风场反演的快速风矢量搜索算法[J].遥感学报,2006,10(2):236-241. 被引量:6
  • 4Freilich M H. SeaWinds Algorithm Theoretical Basis Document [EB / OL]. http://podaac.jpl.nasa.gov/quikscat/qscat-doc, 2000.
  • 5Christiansen M B. Wind Energy Studies Offshore Using Satellite Remote Sensing [C]. Proceedings of the 19th World Energy Congress, Sydney(AU), 2004: 5-9.
  • 6Chi C Y, Li F K. A Comparative Study of Several Wind Estimation Algorithms for Spaceborne Scatterometers[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(2): 115-121.
  • 7Liu W T. The Effects of Variations in sea temperature and atmospheric stability in the estimation of average wind speed by SEASAT-SASS [J]. Journal of Physical Oceanography, 1984,14:392-401.
  • 8Liu W T. Process in scatterometer application [J]. Journal of Oceanography, 2002, 58: 121-136.
  • 9Freilich M H, Long D G, Spencer M W. SeaWinds : A scanning scatterometer for ADEOS-Ⅱ-science overview [C]. Proceedings of the 1994 International Geoscience and Remote Sensing Symposium on Surface and Atmospheric Remote Sensing: Technologies, Data Analysis and Interpretation, Aug. 1994, 2: 960-963.
  • 10Huddleston J N, Spencer M W. SeaWinds: the QuikSCAT wind scatterometer [C]. Proceedings of the IEEE Aerospace Conference, 2001, 4: 1 825-1 831.

引证文献4

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部