摘要
从标量衍射理论出发,采用瑞利-索末菲衍射边界条件,通过求解第一类瑞利-索末菲衍射积分得到平面波经圆环衍射后轴上的波函数,进而分析轴上的光强特性以及光强极值数量、位置和大小与衍射圆环内外孔径的关系.比较用传统的光强定义和精确定义得到的光强公式的偏差,以及偏差与内外半径的关系.并将圆环衍射向内半径为零和外半径为无穷大两个方向进行推广,即对圆孔和圆形障碍物两种情况下的衍射情况进行讨论.
Based on the scalar diffraction theory and the boundary condition of Rayleigh-Sommerfeld, the accurate on-axis propagating wave function of plane wave diffracted by small circular band is obtained by solving the first integral of Rayleigh-Sommerfeld. By means of the function, the extremas of on-axis light intensity, the locations and number as a function of the radius of small circular band are analyzed,and then extend the conclusion as the inner radius trends to zero or outer radius trends to infinity. This study offers the conclusion not only for the application of engineering and technology but also for the optics education.
出处
《大学物理》
北大核心
2006年第12期39-41,59,共4页
College Physics
基金
浙江省教育厅资助项目(20030571)
关键词
圆环衍射
平面波
第一类瑞利-索末菲衍射积分
菲涅耳数
diffraction of circular band
plane wave
the first integral of Rayleigh-Sommerfeld
Fresnel number