摘要
本文在一些特殊条件下对三次样条插值的收敛性进行了讨论。给出了一个结论:设f(x)∈C[a,b],且f(x0)=f(xn),SΔn(x)是关于Δn的三次周期样条插值函数,对任何满足Δn→0的分划序列Δn,nli→∞m‖SΔn(x)-f(x)‖=0成立的充分必要条件是f(x)∈LiP1,且当f(x)∈Lipk1时,有‖SΔn(x)-f(x)‖≤54k-Δn。
This paper carried on a discussion to cubic spline interpolation under some special conditions. It gave a conclusion : suppose f(x)∈C(a、b), and f(x0)=f(xn),S△n(x) is cubic cycle spline interpolationfunction about A, for every graduation sequence △n that satisfies ^-△n→0,limn→∞‖S△n(x)-f(x)‖=0 ,the necessary and sufficient condition is f(x)∈LiP, and when f(x)∈Lipk1,‖S△n(x)-f(x)‖≤5/4k^-△n.
出处
《长春理工大学学报(自然科学版)》
2006年第4期131-133,F0003,共4页
Journal of Changchun University of Science and Technology(Natural Science Edition)
关键词
三次样条插值
收敛性
误差估计
函数类
cubic spline interpolation
convergence
error formula
function family