期刊文献+

高浓度颗粒气固两相流动的二阶矩模型的数值模拟 被引量:2

Second order moments model and numerical simulation ofdense gas-solid two-phase flow
下载PDF
导出
摘要 采用动理学方法,用各向异性的M axwell颗粒速度分布函数,建立颗粒相Boltzm ann方程,分别取零次矩、一次矩和二次矩得到颗粒相连续方程、动量方程和二阶矩方程.模拟计算得到上升管内颗粒流场分布和脉动速度分布,与实验结果比较表明:各向异性颗粒动理学能够反映颗粒流动特性,从而能够更全面地认识高颗粒浓度气固两相流动过程. Kinetic theory of granular flow that was wide used in theoretical studies of gas-solid two-phase flow is based on non-uniform dense gases molecular dynamics. The conservation eqt,ations of solid phase were derived from the assumption of isotropic Maxwell velocity distribution simulating particle flow to molecular motion. However, particle velocity distribution is anisotropic due to energy dissipation by particle collisions. Based on kinetic theory of molecular dynamics, Bohzmann equation of velocity fluctuation of particles was established under the assumption of anisotropic Maxwell velocity distribution. The mass, momentum and energy equations were obtained by taken from first and second orders moments. Particle flow behavior and fluctuating velocity distribution of particles were simulated, and compared with experiments. Simulations indicated that the anisotropic kinetic theory of granular flow fully expressed flow behavior of particles, and processes of dense gas-solid flow.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2006年第11期2015-2018,共4页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(50376013)
关键词 各向异性 二阶矩模型 颗粒动理学 Anisotropic second order moments kinetic theory of granular flow
  • 相关文献

参考文献6

  • 1SRIVASTAVA A, SUNDARESAN S. Analysis of a frictional- kinetic model for gas- particle flow [ J ]. Powder Technology, 2003, 129 : 72 - 85.
  • 2BALZER G. Gas -solid flow modelling based on the kinetic theory of granular media: validation, applications and limitations [ J]. Powder Technology, 2000, 113 : 299 - 309.
  • 3CHAPMAN S, COWLING T G. The mathematical theory of non- uniform gases, 3rd edition [ M] Cambridge: Cambridge Univ Press, 1970. 62 - 89.
  • 4RANGEL- HUERTA A, VELASCO R M. Generalized hydrodynamics in Enskog gases [ J]. Physica A, 2001, 300: 174-194.
  • 5RAFFAELE C, STEFAN L. Mean field theory for a driven granular gas of frictional particles [ J ]. Physica A, 2000, 280:142-147.
  • 6TARTAN M, GIDSPOW D. Measurement of granular temperature and stresses in risers [ J ]. AIChE Journal, 2004, 50: 1760- 1775.

同被引文献25

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部