摘要
探讨了Torres-Vega和Frederick量子相空间表象的特征,并揭示了相空间中波函数的不唯一性。在该量子相空间表象框架下,获得了用于模拟Bose-Einstein凝聚态的非线性Schr dinger方程的严格解。所得到的本征函数可通过“类Fourier”投影变换分别投影到位移空间和动量空间中去,从而得到相应空间中的本征函数。
The quantum phase-space representation established by Torres-Vega and Frederick is discussed. It is described that the wave-functions are not unique in phase space. The rigorous solutions of nonlinear Schroedinger equation, which models the Bose-Einstein condensate, are solved within the framework of the quantum phase-space representation. The eigenfunctions in position and momentum spaces can be available through the "Fourier-like" projection transformation from the phase-space wave-functions.
出处
《北京联合大学学报》
CAS
2006年第4期74-78,共5页
Journal of Beijing Union University
基金
北京市优秀人才培养资助项目(20051D0502209)
北京市属市管高校人才强教计划资助项目