期刊文献+

单样本多姿态人脸识别研究 被引量:7

Various pose face recognition with one front training sample
下载PDF
导出
摘要 对如何用单幅正面人脸图像进行训练,待识别图像具有多种姿态变化的人脸识别问题进行了研究。人脸识别算法的识别率常与每人的训练样本数正相关。但在实际应用中,要求每人提供多幅图像并不合理。通过增加虚拟图像提高识别率,给出了一种模拟人脸姿态改变后的近似图像的简单有效的算法。在FERET人脸库上的实验表明,该文提出的近似图像对提高识别率作用显著,最好识别率提高了28·2%。 Almost all algorithms for face recognition have tight relationship with the images number of each person. The recognition rate increases with the increasing training number of each class. But in applications, it is not practical to ask for many training images from each person. A new method, which can generate the simulated images of face after rotating an angle, was proposed. It generalized the method of Fisherfaces and uncorrelated image projection diseriminant analysis to one sample per person. The recognition rates of Principal Component Analysis ( PCA), Fisherfaces, and Two dimension's PCA (2DPCA) were also studied. The experimental results on FERET face-databases indicate that after adding virtual images, the recognition rates increase greatly, and the best recognition rate has improved by 28.2%.
作者 张生亮
出处 《计算机应用》 CSCD 北大核心 2006年第12期2851-2853,共3页 journal of Computer Applications
基金 国家自然科学基金资助项目(60472060 60503026)
关键词 人脸识别 FISHER脸 虚拟样本 图像投影鉴别分析 face recognition fisherfaces virtual samples image projection discriminant analysis
  • 相关文献

参考文献7

二级参考文献21

  • 1边肇祺 张学工.模式识别(第2版)[M].北京:清华大学出版社,1999..
  • 2丁学仁 蔡庙可.工程中的矩阵理论[M].天津:天津大学出版社,1995.115-118.
  • 3Huang Jian,Yuen Pong C,Chen Wen-Sheng,et al.Componentbased LDA Method for Face Recognition with One Training Sample [C].Proceedings of the IEEE International Workshop on Analysis and Modeling of Faces and Gestures (AMFG'03)
  • 4Yang Jian,Zhang D,Yang Jing-Yu,et al.Two-Dimensional PCA:A New Approach to Appearance-Based Face Representation and Recognition [J].IEEE transaction on Pattern Analysis and Machine Intelligence,2004,26 (1)
  • 5Belhumeur P N,et al.Eigenfaces vs.Fisherfaces:Recognition Using Class Specific Linear Projection [J].IEEE Transactions on PAMI,1997,19(7)
  • 6Shan Shiguang,et al.Extended Fisherface for Face Recognition from a Single Example Image Per Person [C].IEEE International Symposium on Circuits and Systems,2002,2
  • 7Wu Jianxin,Zhou Zhi-Hua.Face recognition with one training image per person [J].Pattern Recognition Letters,2002,23:1711~1719
  • 8Chen Songcan,Zhang Daoqiang,Zhou Zhi-Hua.Enhanced (PC)^2 A for face recognition with one training image per person [J].Pattern Recognition Letters,2004,25:1173~ 1181
  • 9Turk M, Pentland A. Eigenfaces for Recognition[J]. Cognitive Neuroscience, 1991, 3(1):71-86.
  • 10Yang Jian, Zhang David, Two-dimensional PCA: A New Approach to Appearance-based Face Representation and Recognition[J]. IEEE PAMI, 2004, 26(1): 131-137.

共引文献55

同被引文献98

引证文献7

二级引证文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部