期刊文献+

基于MODIS植被指数时间谱的华北平原土地覆盖分类 被引量:27

Land cover classification of North China Plain using MODIS_EVI temporal profile
下载PDF
导出
摘要 中分辨率成像光谱仪(M OD IS)已在全球资源环境监测中发挥了重要作用,但是它的低分辨率成为提高分类精度的阻碍。利用M OD IS的高时间分辨率弥补其低空间分辨率的不足,设计分类器改善分类精度。利用2003年23个时相的M OD IS_EV I图像,构建华北平原植被指数图像时间立方体。在谐波分析去噪标准化基础上,从EV I时间谱上提取5个表征物候差异的特征向量,结合表征地气交互作用差异的地表温度(LST)信息及表征地表固有的空间分异特征的坡度信息,建立分类二叉树进行土地覆盖分类。结果表明,与2000年TM分类结果的总体一致性为75.5%,K appa系数为0.68。而NA SA U SG S基于M OD IS分类精度为66.0051%,K appa系数为0.3209。进一步与2003年耕地面积的官方统计资料的比较表明,该文的估算误差为34.0507 khm2,而NA SA U SG S的估算误差高达66.1205 khm2。研究表明利用高时间分辨率的M OD IS植被指数时间序列获得较高精度的土地覆盖分类结果是可能的。 MODIS data play an important role in global environmental and resource researches. But its low spatial resolution sometimes becomes a regretful factor by some people in pursuit of more precise classification results. In this research, MODIS high temporal resolution was used to improve the accuracy of land cover classification of the North China Plain using MODIS_EVI time-series of 2003. Harmonic Analysis of Time Series(HANTS) was performed on the MODIS_EVI image time series to reduce the cloud or other noise effects. Based on five phenological features derived from EVI profiles, as well as on Land Surface Temperature(LST) and topographic slope, a simple but reasonable decision tree was built to distinguish the ambiguous land cover classifications. The overall accuracy of the final land cover map was 75.5%, and the kappa coefficient is 0. 68. While the overall accuracy and kappa coefficient of NASA USGS product are 66. 0051% and 0. 3209 respectively. When compared with the cropland area from official statistics, the classification in the paper shows much higher consistence with an overall mean square root error of 34. 0507 kilo-hectare versus 66. 1205 kilo-hectare by USGS product, indicating that land cover classification using MODIS EVI time series and decision tree is feasible and promising.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2006年第12期128-132,F0003,共6页 Transactions of the Chinese Society of Agricultural Engineering
基金 国家自然科学基金项目(40271085) 973计划子课题(2002CB412506)
关键词 MODIS 时间谱 物候特征 决策树 土地覆盖分类 耕地 MODIS temporal profile phenological feature decision tree land cover classifications cropland
  • 相关文献

参考文献14

  • 1Townshend J R,Justice C,Li W,et al.Global land cover classification by remote sensing:Present capabilities and future possibilities[J].Remote Sensing of Environment,1991,35:243-255.
  • 2Reed B,Brown D,Vanderzee D,et al.Measuring phonological variability from satellite imagery[J].Journal of Vegetation Science,1994,5,703-714.
  • 3盛永伟,陈维英,肖乾广,郭亮.利用气象卫星植被指数进行我国植被的宏观分类[J].科学通报,1995,40(1):68-71. 被引量:81
  • 4Defries R S,Hanson M C,Townshend J R G.Global land cover classification at 8km spatial resolution:the use of training data derived from landsat imagery in decision tree classiers[J].Int J Remote Sensing,1998,19(6):3141-3168.
  • 5Hansen M C,Defries R S,Townshend J R G,et al.Global land cover classification at 1km spatial resolution using a classification tree approach[J].Int J Remote Sensing,2000,21(6,7):1331-1364.
  • 6Moody A,Johnson D M.Land-surface phonologies from AVHRR using the discrete fourier transform[J].Remote Sens Environ,2001,75,305-323.
  • 7王长耀,骆成凤,齐述华,牛铮.NDVI-Ts空间全国土地覆盖分类方法研究[J].遥感学报,2005,9(1):93-99. 被引量:41
  • 8邹亚荣,赵晓丽,张增祥,王长有,刘斌.华北土地利用十年动态特征分析[J].地理科学进展,2003,22(2):158-163. 被引量:6
  • 9Huete.MODIS vegetation indices vegetation dynamics,land cover,and land cover change[Z].Aqua/MODIS,Data Products Handbook-Volume 2,173-175.
  • 10陈云浩,李晓兵,史培军.整合陆地表面温度与植被指数信息进行地表覆盖变化研究[J].第四纪研究,2003,23(3):343-343. 被引量:7

二级参考文献34

  • 1李秀彬.全球环境变化研究的核心领域──土地利用/土地覆被变化的国际研究动向[J].地理学报,1996,51(6):553-558. 被引量:1724
  • 2Liu jiyuan etc.Spatial pattern of land use change and analysis of driving forces in northeast china during ten years.Hokkardo university of education,China—Japan comparative study of land use cover change(1),2002.3.
  • 3国家统计局.中国统计年鉴2001[M].北京:中国统计出版社,2001..
  • 4Townshend J R, Justice C R, Kalb V. Characterization and classification of south American land cover types using satellite data [J]. International Journal of Remote Sensing, 1987, 8: 1189-1207.
  • 5Lloyd D. A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery [J]. International Journal of Remote Sensing, 1990, 11: 2269-2279.
  • 6Stone T, Schlesinger P, Houghton T, Woodwell G. A map of the vegetation of South America based on satellite imagery [J]. Photogrammetric Engineering & Remote Sensing, 1994, 60(5): 541-551.
  • 7Nelson R, Holben B. Identifying deforestation in Brazil using multi-resolution satellite data [J]. International Journal of Remote Sensing, 1986, 7: 429-448.
  • 8Tucker C J, Dregne H E,Newcomb W W. Expansion and contraction of the Sahara desert from 1980 to 1990. [J], Science, 1991, 253: 299-301.
  • 9Lambin E F, Strahler A H. Change-vector analysis: a tool to detect and categorize land-cover change processes using high temporal-resolution satellite data [J]. Remote Sensing of Environment, 1994, 48:231-244.
  • 10Malingreau J P, Tucker C J, Laporte N. AVHRR for monitoring global tropical deforestation [J]. International Journal of Remote Sensing. 1989, 10:855-867.

共引文献853

同被引文献441

引证文献27

二级引证文献473

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部