期刊文献+

基于粒子群优化的PID伺服控制器设计 被引量:17

PID controller design in servo system based on particle swarm optimization
下载PDF
导出
摘要 针对耦合和非线性永磁同步电机(PMSM)控制器优化设计的难题,提出了基于粒子群优化(PSO)算法的比例、积分和微分(PID)控制器的优化设计方法.结合PSO的基本原理和PMSM伺服系统的控制策略,给出了优化PID控制器设计的步骤.考虑到综合评价系统的各项性能指标,在优化过程中引入了新的模糊汉明距离的评价策略.同时对遗传算法(GA)和PSO算法优化结果进行对比研究.仿真和实验结果表明,该方法能搜寻到最优或次最优的参数空间,并能取得比GA更好的空间解.优化得到的PID控制器速度响应快、超调量小,有效地提高了伺服系统的动态性能. To deal with the difficulties in optimal controller design for coupled and nonlinear permanent magnet synchronous motor (PMSM) servo system, a novel proportional-integral-derivative (PID) controller design method was proposed based on particle swarm optimization (PSO) algorithm. By combining the principle of PSO and control strategy for the PMSM servo system, the procedures for optimal PID controller design were achieved. Considering overall evaluation of the system performance, a new evaluation strategy using fuzzy hamming distance was introduced during the optimization process. Comparison studies between the optimized data obtained by genetic algorithm (GA) and those by PSO algorithm were made. The simulation and experimental results show that the proposed method can locate the optimal or near optimal parameter space, achieve a better solution space than the GA method. The optimized PID controller has rapid response and low overshoot, and can effectively improve the dynamic performance for the servo system.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2006年第12期2144-2148,共5页 Journal of Zhejiang University:Engineering Science
关键词 粒子群优化 遗传算法 比例 积分微分控制器 永磁同步电机伺服系统 particle swarm optimization GA PID controller PMSM servo system
  • 相关文献

参考文献11

  • 1GAING Z L.A particle swarm optimization approach for optimum design of PID controller in AVR system[J].IEEE Transactions on Energy Conversion,2004,9(2):384-391.
  • 2LIN C L,JAN H Y,SHIEH N C.GA-based multiobjective PID control for a linear brushless DC motor[J].IEEE Transactions on MECHATRONICS,2003,8(1):56-65.
  • 3JUANG C H.A hybrid of genetic algorithm and particle swarm optimization for recurrent network design[J].IEEE Transactions on Systems,Man and Cybernetics,2004,34(2):997-1006.
  • 4KENNEDY J,EBERHART R.Particle swarm optimization[C]∥Proceedings of International Conference on Neural Networks.Perth,Australia:IEEE,1995:1942-1948.
  • 5FUKUYAMA Y,YOSHIDA H.A particle swarm optimization for reactive power and voltage control considering voltage security assessment[C]∥ Proceedings of the Congress on Evolutionary Computation.Seoul:IEEE,2001:87-93.
  • 6SHI Y,EBERHART R.A modified particle swarm optimizer[C]∥ Proceedings of International Conference on Evolutionary Computation.Anchorage,Alaska:IEEE,1998:69-73.
  • 7HU X H,EBERHART R.Engineering optimization with particle swarm[C]∥ Proceedings of IEEE Swarm Intelligence Symposium.Indianapolis,Indiana:IEEE,2003:53-57.
  • 8KONSTANTINOS E P,MICHAEL N V.On the computation of all global minimizers through particle swarm optimization[J].IEEE Transactions on Evolutionary Computation,2004,8(3):221-224.
  • 9FRANS V D B,ANDRIES P E.A cooperative approach to particle swarm optimization[J].IEEE Transactions on Evolutionary Computation,2004,8(3):225-239.
  • 10何福忠,孙优贤.基于稳定参数空间的PID调节器遗传优化设计[J].控制与决策,2000,15(4):507-509. 被引量:24

二级参考文献20

  • 1李清泉,郭莉.智能PID调节器[J].自动化学报,1993,19(3):336-339. 被引量:24
  • 2GAHINET P, NEMIROVSKI A, LAUB A J, et al. LMI Control Toolbox for Use with MATLAB [M]. MI, USA: The Math Works Inc., 1995.
  • 3WANG J, WILSON D A. Application of generalized l2 synthesis to decoupled active suspension systems [A]. Proceedings of the American Control Conference [C]. Arlington, VA: [s.n.], 2001: 25-27.
  • 4GEROMEL J C, DE OLIVERIRA M C, HSU L. LMI characterization of structure and robust stability [J]. Linear Algebra Application, 1998, 285: 69-80.
  • 5DE OLIVERIRA M C, GEROMEL J C, BERNUSSOU J. An LMI optimization approach to multi-objective controller design for discrete-time systems [A]. Proceedings of the 38th Conference on Decision and Control [C]. Phoenix, Arizona, USA:[s.n.], 1999: 3611-3616.
  • 6DE OLIVERIRA M C, BERNUSSOU J, GEROMEL J C. A new discrete time robust stability condition [J]. Systems and Control Letters, 1999, 37: 261-265.
  • 7NEWELL R B, LEE P L. Applied process control: A case study [M] Sydney. Prentice-Hall, 1989.
  • 8SAMYUDIA R, LEE P L, CAMERON I T. A New Approach to Decentralized Control Design [J]. Chemical Engineering Science, 1995, 50(11): 1695-1906.
  • 9MACIEJOWSKI J M. Predictive Control with Constraints [M]. London, UK:Pearson Education, 2002.
  • 10YAN W J, CAO Y. An extension of Gl2 synthesis optimization based on a new Lyaponov stability Condition [J]. Journal of Zhejiang University: Science, 2004,5(7):827-835.

共引文献30

同被引文献145

引证文献17

二级引证文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部