期刊文献+

5-点连通图的完全圈可扩性

Extensibility of Fully Cycle of 5-Vertex Connected Graphs
下载PDF
导出
摘要 图的完全圈可扩性是图的圈性质中最强的性质,这使得对图的完全圈可扩性的研究尤为重要。研究了5-点连通图的完全圈可扩性,并证明了顶点数不小于9的5-点连通图是完全圈可扩的。从而推广了马浩静和石玉华提出的相关结果。 The full cycle extensibility of a graph is the strongest one of the cycle properties of graphs, so the study on the full cycle extensibility of a graph is more important. This paper studies the full cycle extensibility of 5-vertex connected graph, and proves that a 5-vertex connected graph whose vertices are not less than 9 is extensible full cycle. Then, some known results of MA Hao-jing and SHI Yu-hua are popularized.
出处 《山东科技大学学报(自然科学版)》 CAS 2006年第4期107-109,共3页 Journal of Shandong University of Science and Technology(Natural Science)
关键词 连通 s-点连通图 完全圈可扩性 connection s-vertex connected graph full cycle extensibility
  • 相关文献

参考文献3

  • 1J A Bondy and U S R Murty.Graph Theory with Applications[M].New York:Macmillan London and Elsevier,1976.
  • 2G R T Hendry.Extending cycles in graphs[J].Discrete Math,1990,85:59-72.
  • 3石玉华,曲晓英.强半无爪图的完全圈可扩性[J].山东师范大学学报(自然科学版),2006,21(2):5-7. 被引量:5

二级参考文献5

  • 1Bondy J A, Murty U S R. Graph Theory with Applications[ M ]. New York: Macmillan London and Elsevier, 1976
  • 2Ainouche A. Quasi - claw - free graphs[J]. Discrete Math, 1998, (179) : 13 - 26
  • 3Oberly D, Sumner D. Every connected, locally connected nontrivial graph with no induced claw is hamiltonian[J]. Graph Theory, 1979, (3) :351 - 356
  • 4Clark L. Hamiltonian properties of connected locally connected graphs[J].Congr Numer, 1981, (32) : 199 - 204
  • 5Hendry G R T. Extending cycles in graphs[J]. Discrete Math, 1990, (85):59 - 72

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部