期刊文献+

一种新的变学习速率自适应独立分量分析算法 被引量:7

New variable learning rate adaptive independent component analysis Algorithm
下载PDF
导出
摘要 学习速率的优选问题是自适应ICA算法中一个重要问题。论文建立了学习速率与相依性测度之间的一种非线性函数关系,以此为基础提出了一种新的变学习速率的自适应ICA算法,并且分析了参数a,b的取值原则及对算法收敛性能和稳态性能的影响。该算法能根据相依性测度所反映的信号分离的状态自适应地调节学习速率,克服了传统算法在稳态阶段步长调整过程中的不足。理论分析和计算机仿真结果都验证了算法的收敛性能和稳态性能。 An important problem in adaptive ICA algorithm is opting learning rate.This paper establishes a nonlinear functional relationship between learning rate and measure of signal dependence.On the basis of the functional relationship,the author presents the new algorithm of variable learning rate adaptive ICA and analyses convergence and steady of the algorithm with variable a and b.This algorithm can adjust the learning rate on the basis of the degree of signal separation which is reflected by measure of signal dependence,and overcomes the disadvantages of traditional algorithms in the process of step size change of adaptive steady state.The theoretical analysis and computer simulation results show this algorithm has better performance in convergence and steady.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第1期53-56,82,共5页 Computer Engineering and Applications
基金 国家自然科学基金资助项目(60472062) 湖北省自然科学基金资助项目(2004ABA038)。
关键词 盲信号分离 独立分量分析 学习速率 相依性测度 Blind Source Separation(BSS) Independent Component Analysis(ICA) learning rate
  • 相关文献

参考文献13

  • 1Bell A J,Sejnowski T J.An information-maximlzation approach to blind separation and blind deconvolution[J].Neural Computation,1995,7(6) : 1129-1159.
  • 2Karhunen J,Joutsensalo J.Representation and separation of signals using nonlinear PCA type learning[J].Neural Networks, 1994,7 (1) :113-127.
  • 3Karhunen J,Pajunen P,Oja E.The nonlinear PCA criterion in blind source separation:relations with other approaehes[J].Neural Computing, 1998,22 ( 1 ) :5-20.
  • 4Comon P.Independent component analysis,a new concept?[J].Signal Processing, 1994,36 (3) :287-314.
  • 5Amari S.Natural gradient works efficiently in learning[J].Neural Computation, 1998,10(2) :251-276.
  • 6Amari S,Cichocki A.Adaptive blind signal processing:Neural Network Approaches[J].Proceeding of IEEE, 1998,86(10) :2026-2048.
  • 7Cardoso J F,Laheld B.Equivariant adaptive source separation [J].IEEE Tran on Signal Processing,1996.44(12):3017-3030.
  • 8Cruces S,Cichocki A,Castedo L.An iterative inversion approach to blind source separation[J].IEEE Tran on Neural Networks,2000,11(6) : 1423-1437.
  • 9张贤达,朱孝龙,保铮.Grading learning for blind source separation[J].Science in China(Series F),2003,46(1):31-44. 被引量:14
  • 10高鹰,谢胜利.一种变步长LMS自适应滤波算法及分析[J].电子学报,2001,29(8):1094-1097. 被引量:403

二级参考文献76

  • 1吴光弼,祝琳瑜.一种变步长LMS自适应滤波算法[J].电子学报,1994,22(1):55-61. 被引量:35
  • 2叶华,吴伯修.变步长自适应滤波算法的研究[J].电子学报,1990,18(4):63-70. 被引量:73
  • 3[1]Hyvarinen, A., Fast and robust fixed-point algorithms for independent component analysis, IEEE Trans. Neural Networks,1999, 10(3): 626-634.
  • 4[2]Giannakopoulos, V., Comparison of adaptive independent component analysis algorithms, Available at http://www.cis.hut. fi/~xgiannak/.
  • 5[3]Bell, A. J., Sejnowski, T. J., An information-maximization approach to blind separation and blind deconvolution, Neural Computations, 1995, 7:1129-1159.
  • 6[4]Karhunen, J., Joutsensalo, J., Representation and separation of signals using nonlinear PCA type learning, Neural Net works, 1994, 7: 113-127.
  • 7[5]Karhunen, J., Pajunen, P., Oja, E., The nonlinear PCA criterion in blind source separation: Relations with other approaches, Neural Computing, 1998, 22: 5-20.
  • 8[6]Comon, P., Independent component analysis, a new concept? Signal Processing, 1994, 36:287-314.
  • 9[7]Pham, D. T., Blind separation of instantaneous mixtures of sources via an independent component analysis, IEEE Trans. Signal Processing, 1996, 44: 2768-2779.
  • 10[8]Cardoso, J. F., Laheld, B., Equivariant adaptive source separation, IEEE Trans. Signal Processing, 1996, 44: 3017-3030.

共引文献624

同被引文献89

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部