期刊文献+

基于模糊积分的客户分类不确定性优化研究 被引量:1

Study on optimization of uncertainty of client classification based on fuzzy integral
下载PDF
导出
摘要 数据挖掘技术为高效的客户分类提供了强大的支持,然而仅依靠这门技术并不能很好地完成这项任务。因为分类方法的局限性,现实数据存在信息的不确定、不完整、先验知识缺乏,研究对象的复杂性等困难导致的分类不确定性。从这个角度出发,将模糊积分融合方法与数据挖掘技术结合来减小客户分类的不确定性,提出了一种模糊密度修正方法,它利用了训练样本先验静态信息和各分类器识别结果包含的动态信息对模糊密度进行自适应动态赋值。仿真结果表明了它的有效性。 Though data mining technique provides powerful support to highly efficient client classification,the technique can not fulfill the task well alone.Becanse of the limitation of this classifying method,the classifying uncertainty,which is resulted in the difficulties such as the uncertainty,the incompleteness and the deficiency of transcendent knowledge of the information and the complexity of the research object,exists in the real data.From this point of view,the uncertainty of client classification is decreased by combining the method of fuzzy integral and the technique of data mining and a blur density correcting method is put forward to automatically adapt and dynamically evaluate the blur density by using transcendent static information of the training prototype and dynamic information included in the identified result of various classifiers.The emulational result testifies its validity.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第1期212-214,248,共4页 Computer Engineering and Applications
基金 国家自然科学基金重点资助项目(60234030)。
关键词 信息融合 模糊积分 不确定性 information fusion fuzzy integral uncertainty
  • 相关文献

参考文献8

  • 1杨杰,胡英,全勇.结合数据融合和数据挖掘技术的信息智能处理平台[J].高技术通讯,2003,13(1):57-61. 被引量:9
  • 2杨国胜,窦丽华.信息融合及其应用[M].北京:兵器工业出版社,2004.
  • 3Waltz E L.information understanding:integrating date fusion and data mining processes[C]//Proceedings of the 1998 IEEE International Symposium on Circuits and Systems,1998:553-556.
  • 4管涛,冯博琴.Choquet模糊积分的粗糙性及信息融合[J].西安交通大学学报,2004,38(12):1251-1255. 被引量:8
  • 5Chibelushi C C,Deravi F,Mason J S D.Adaptive classifier integration for robust pattern recognition[J].IEEE Trans on S M C-Part B:Cybernetics, 1999,29 ( 6 ) : 902-907.
  • 6Li Xue-fei ,Feng Hui-min ,Huang Dong-mei.Some aspects of classifier fusion based on fuzzy integrals[C]//Proceedings of 2005 International Conference on Machine Learning and Cybernetics ,2005,7 : 4437-4441.
  • 7哈明虎,吴从炘.模糊测度与模糊积分[M].北京:科学出版社,1998.
  • 8刘汝杰,袁保宗,唐晓芳.一种新的基于聚类的多分类器融合算法[J].计算机研究与发展,2001,38(10):1236-1241. 被引量:12

二级参考文献15

  • 1郁文贤,雍少为,郭桂蓉.多传感器信息融合技术述评[J].国防科技大学学报,1994,16(3):1-11. 被引量:157
  • 2Tseng L Y,Pattern Recognition,2000年,33卷,7期,1251页
  • 3Xu L,IEEE Trans Systems,Man and Cybernetics,1992年,22卷,3期,418页
  • 4Gader P D, Mohamed M A, Keller J M. Fusion of handwritten word classifiers [J]. Pattern Recognition Letters, 1996,17(6): 577-584.
  • 5Tahani H, Keller J M. Information fusion in computer vision using the fuzzy integral [J]. IEEE Trans on Systems, Man, and Cybernetics, 1990,20(3):733-741.
  • 6Auephanwiriyakul S, Keller J M, Gader P D. Generalized Choquet fuzzy integral fusion [J]. Information Fusion, 2002,3(1):69-85.
  • 7Sugeno M. Fuzzy measures and fuzzy integrals:a survey[A]. Fuzzy Automata and Decision Process [C]. New York: North-Holland, 1977. 89-102
  • 8Murofushi T, Sugeno M. A theory of fuzzy measures: representations, the Choquet integral, and null sets [J]. J Math Anal Appl, 1991, 159(2): 532-549.
  • 9Pawlak Z, Peters J F, Skowron A, et al. Rough measures: theory and applications [J]. Bulletin of Internation Rough Set Society, 5(1-2):177-183.
  • 10Chiang J H. Aggregating membership values by a Choquet-fuzzy-integral based operator [J]. Fuzzy Sets and Systems, 2000,114(3):367-375.

共引文献27

同被引文献15

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部