期刊文献+

多视极化白化滤波器参数估计方法的改进

Improvement research of parameter estimation in multilook polarimetric whitening filter
下载PDF
导出
摘要 多视极化白化滤波器(MPWF)是一种专门应用于极化SAR图像降噪的有效方法,其中,滤波器参数估计的精确度直接决定了其滤波性能的好坏。本文通过对全极化SAR噪声模型的介绍和几种典型的参数估计方法的比较,针对传统方法的缺陷,提出基于无监督分类的自适应参数估计方法。此方法以分类图像作为对象;在滑动矩形窗内以中心像素作为参照物,自动搜索与其同类的像素并用于降噪。实验结果表明,该法不仅有效地抑制了相干斑,而且对图像的纹理信息具有很好的保持能力。 The multilook polarimetric whitening filter is an effective method on speckle reduction in multilook polarimetric synthetic aperture radar (SAR) images, where the function of the filter is directly decided by the precision of parameter estimation. In this paper, the model of the polarimetric synthetic aperture radar (SAR) is stated here, with some typical covariance matrix parameter estimate methods, which are applied to the multilook polarimetric whitening filter. Aimed at traditional defects, a novel approach based on unsupervised classification is proposed here, where the classified image is chosen as the processed object and the central pixel in moving rectangular window is chosen as reference; and then through automatic search, the pixels in the same class are selected and used for despeckling. The experimental results demonstrate the effectiveness both on speckle reduction and preservation of texture information from the experimental- results. Comparisons are also made.
作者 孙斌 孙楠
出处 《电子测量技术》 2006年第6期71-72,83,共3页 Electronic Measurement Technology
关键词 极化合成孔径雷达 相干斑 无监督分类 MPWF polarimetric synthetic aperture radar speckle unsupervised classification MPWF
  • 相关文献

参考文献7

  • 1LIU G Q,HUANG S J,TORRE A,et al.The multilook polarimetric whitening filter (MPWF) for intensity speckle reduction in polarimetric SAR images[J].IEEE Trans.Geosci.Remote Sensing,1998,36 (3):1016-1020.
  • 2LOPES A,NEZRY E,TOUZI R,et al.Structure detection and statistical adaptive speckle filtering in SAR images[J].INT.J.Remote Sensing,1993,14(9):1735-1758.
  • 3LIU X Q,YANG ZH,YANG R L.Improvement research on texture-detection in full-polarization SAR image filter[J].IEEE Geosci.Remote Sensing Symposium,France,2003:3973-3975.
  • 4CLOUDE S R,POTTIER E.An entopy based classification scheme for land applications of polarimetric SAR[J].IEEE Trans.Geosci.Remote Sensing,1997,35(1):68-78.
  • 5LEE J S,GRUNES M R,AINSWORTH T L,et al.Unsupervised classification using polarimetric decomposition and the complex Wishart classifier[J].IEEE Trans.Geosci.Remote Sensing,1999,37 (5):2249-2258.
  • 6LEE J S,GRUNES M R,KWOK R.Classification of multilook polarimetric SAR imagery based on complex Wishart distribution[J].Int.J.Remote Sensing,1994,15(11):2299-2311.
  • 7代广进,侯正信.小波域信号去噪算法[J].电子测量技术,2005,28(6):37-37. 被引量:6

二级参考文献2

  • 1David L Donohol Denoising by soft-Thresholding IEEE Trans on IT 1995, 41 (3): 613-627.
  • 2S. P. Ghael, A. M. Sayeed, etc, Improvied wavelet denoising vio empirical wiener filtering. Proceedings ofSPIE, 1997. vol. 3169:389-399.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部