摘要
在多线性分离变量法所得(2+1)维破裂孤子方程广义解(包含2个任意函数)中引入符合条件的Jacobi椭圆函数和Weierstrass椭圆函数,从而获得了该系统的新双周期解.极限条件下,也获得了一些dromion解、dromion-antidromion解、多dromion-antidromion解,以及在一个方向上是周期的,而在另一个方向上是局域的dromion-antidromion解和多dromion-antidromion解等局域激发模式,并利用图像实现了这些结果的可视化.
A class of new doubly periodic wave solutions for(2+1)-dimensional breaking soliton equation are obtained by introducing appropriate Jacobi elliptic function and Weierstrass elliptic function in the general solution (contains two arbitrary functions) got by means of multilinear variable separation approach for (2+1)-dimensional breaking soliton equation. Limit cases are considered and some localized excitations are derived, such as dromion, dromion-antidromion, multidromions-antidromions, and so on. Some solutions of the dromion-antidromion and multidromion-santidromions are periodic in one direction but localized in the other direction. Furthemore, these results are visualized by using their figures.
出处
《西北师范大学学报(自然科学版)》
CAS
2007年第1期34-38,共5页
Journal of Northwest Normal University(Natural Science)
基金
国家自然科学基金资助项目(1024700810575082)
关键词
(2+1)维破裂孤子方程
多线性分离变量法
椭圆函数
周期解
局域激发
(2 + 1)-dimensional breaking soliton equation
mutilinear variable separation approach
elliptic function
periodic wave solution
localized excitation