期刊文献+

主成分分析与BP神经网络的人脸识别方法研究 被引量:12

Face Recognition Method of Principal Component Analysis and Back-propagation Neural Network
下载PDF
导出
摘要 BP神经网络在人脸识别方面的研究中,原始样本数据不进行预处理与特征提取,不仅使识别结果准确降低,而且使BP神经的结构复杂化。主成分分析法能提取代替样本的少数几个主成分,这些主成分彼此不相关,符合特征优化的要求。BioID人脸数据库实验表明,将主成分分析与BP神经网络相结合,与传统单一的BP神经网络识别相比,提高识别的正确率,减少了训练时间,同时简化了网络结构,减少很大的计算量。 In the research of face recognition based on BP neural network the recognition precision will be low and the structure of BP neural network will become complex if sample's data is not preprocessed and features are not extracted. The principal component analysis can extract main factors that replace the whole face samples, furthermore these factors are not correlative each other and can well satisfy the features optimization. In BioID database experiment shows that firstly the principal component analysis used to process the face sample data,then the BP neural network used to recognize the face,compared with the tradition simple method,it improves the precision,reduces training time,simplifies structure of net and decreases the calculation.
出处 《现代电子技术》 2007年第2期53-55,共3页 Modern Electronics Technique
关键词 主成分分析 BP神经网络 人脸识别 BiolD人脸数据库 principal component analysis BP neural network face recognition BioID face database
  • 相关文献

参考文献7

二级参考文献51

  • 1梁宾桥,王继宗,梁晓颖.高性能混凝土强度预测的神经网络-主成分分析[J].计算机工程与应用,2004,40(18):192-195. 被引量:13
  • 2许立,程兆年,胡善荣,杨传仁.人工神经网络结合正交变换方法研究[J].计算机与应用化学,1997,14(2):127-132. 被引量:1
  • 3Ni Hong-Guang,Wang Ji-Zong.Prediction of Compressive Strength of Concrete by Neural Networks[J].Cement and Concrete Research,1999;30:1245~1250
  • 4I-Cheng Yeh.Modeling of Strength of High-performance Concrete Using Artificial Neural Networks[J].Cement and Concrete Research,1998 ;28(12):1797~1808
  • 5Wu X S,广东造纸,1998年,4期,1页
  • 6Luo Q,广东造纸,1997年,5/6期,93页
  • 7Xue D Y,Control System Using Computer Aided Design——MATLAB Language And Its Application,1996年,16页
  • 8Wan L S,Organic Compound Relationship Between Quantitative and Active,1993年,40页
  • 9Chun-hung Lin ,Jia-ling Wu. Senior Member, IEEE:Automatic Facial Feature Extraction by Genetic Algorithms [ J ]. IEEE Transactions on Image Processing,1999:8 (6) :834 - 841
  • 10Shi-hong Jeng,Hong Yuan Mark Liao,Chin Chuan Han et al. Facial Feature Detection Using Geometrical Face Model: An Efficient Approach [J]. Pattern Recognition,1998,31 (3) :273 -282

共引文献81

同被引文献76

引证文献12

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部