期刊文献+

基于混沌支持向量机的径流时间序列预测研究——以渭河宝鸡林家村站径流序列为例 被引量:5

Research on prediction of runoff time series based on SVM——Case study of runoff of Linjiacun gauging station on the Weihe river at Baoji city
下载PDF
导出
摘要 混沌理论和支持向量机具有强大的非线性处理能力.首先利用混沌系统相空间延迟坐标重构理论对林家村站月径流进行相空间重构,以便更为深刻地挖掘月径流序列中的信息,并运用最大Lyapunov指数法证实渭河林家村站月径流系列具有混沌特性.在此基础上利用基于统计学习理论的支持向量机建立混沌时间序列的预测模型.仿真结果表明,所提出的模型预测结果好于混沌神经网络模型的预测结果,该模型具有较高的泛化能力,可用于林家村站月径流预测. Chaos theory and support vector machine have great nonlinear treatment capability. Firstly the phase-space reconstitution of monthly runoff at Linjiacun gauging station was made by phase-space delay coordinate reconstitution theory of chaos system,so that information of monthly runoff series was profoundly investigated . At the same time,the chaotic feature of the monthly runoff at Linjiacun is proved by using maximal Lyapunov exponent method. With this as the basis, the prediction model of chaos time series is built by using support vector machine from statistic learning theory. It is shown by simulation experiments that the prediction results of the model proposed are better than the ones of Chaos ANN,and this model has better generalization,and may be used for monthly runoff prediction at Linjiacun.
出处 《西安建筑科技大学学报(自然科学版)》 CSCD 北大核心 2006年第6期777-781,共5页 Journal of Xi'an University of Architecture & Technology(Natural Science Edition)
基金 国家科技部"西部开发"重大项目(2004BA901A13)
关键词 支持向量机 径流时间序列 混沌理论 support vector machine runoff time series chaotic system
  • 相关文献

参考文献9

二级参考文献45

  • 1陈国华,李煜,盛昭瀚.基于不同决策规则的产出系统的混沌与控制[J].系统工程理论与实践,2004,24(5):84-90. 被引量:8
  • 2董超俊,刘智勇,邱祖廉.基于混沌理论的交通量实时预测[J].信息与控制,2004,33(5):518-522. 被引量:22
  • 3蒋铁军,李积源.基于支持向量机的武器系统费用预测分析[J].系统工程理论与实践,2004,24(9):121-124. 被引量:15
  • 4顾炜,翟东辉,张立明.对复杂混沌时间序列快速预测的前馈神经网络[J].复旦学报(自然科学版),1995,34(3):262-268. 被引量:4
  • 5Qing Zhang and Stephen J.Stanley.Forecasting raw-water quality parameters for the North Saskatchewan river by neural network modeling [J].Water.Res.,1997,131(9): 2340-2350.
  • 6Harro bode and Emst A.Nusch.Advanced river quality monitoring in the RUHR Basin[J]Wat.Sec.Tec.,1999,l40(10):145-152.
  • 7Holger R.Maier and Grame C.Dandy.Understanding the behavior and optimizing the performance of back-propagation neuralnetworks: an empirical study [J].Environmental Modeling & Software,1998,13: 179-191.
  • 8Joseph H.W.Lee,Yan Huang,Mike Dickman,A.W.Jayawardena.Neural network modeling of coastal algal blooms [J].Ecological Modelling 2003,159: 179-201.
  • 9Holger R.Maier,Grame C.Dandy.Neural Network Based Modeling of Environmental Variables: A Systematic Approach[J],Mathematical and Computer Modeling,2001,33: 669-682.
  • 10Shamshad Ahmad.Performance of stochastic approaches for forecasting river water quality [J].Water.Res.,2001,35(18):4261-4266.

共引文献256

同被引文献75

引证文献5

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部