摘要
引入含裂纹问题基本解(Erdogan基本解),提出了基于Erdogan基本解的样条虚边界元法,并阐述了该法在实施过程中的特点与具体做法.采用该方法详细分析了若干典型裂纹问题,全面考察了方法的计算精度和收敛情况,以及在求解复杂裂纹问题方而的能力.结果显示,该方法具有精度高、收敛快、计算能力强等优点,是裂纹问题分析中一种具有竞争力的通用计算方法.
The Erdogan fundamental solutions for infinite cracked plates are introduced in this paper. The spline fictitious boundary element method is then proposed and formulated for analysis of mode Ⅰ and mixed mode (mode Ⅰ and Ⅱ) problems based on the above fundamental solutions. The proposed method is further applied to analyze certain crack problems, in which the computation accuracy, convergence rate and the versatility of the method are demonstrated in details.
出处
《力学学报》
EI
CSCD
北大核心
2007年第1期93-99,共7页
Chinese Journal of Theoretical and Applied Mechanics
关键词
断裂力学
应力强度因子
Erdogan基本解
边界元法
样条函数
fracture mechanics, stress intensity factors, Erdogan fundamental solutions, boundary element method, spline function