期刊文献+

最小二乘支持向量机在故障诊断中的应用 被引量:8

Application of Least Squares Support Vector Machine in Fault Diagnosis
下载PDF
导出
摘要 为了提高机械设备故障诊断的精度,将小波包分析与最小二乘支持向量机进行了有机的结合。首先对故障信号功率谱进行小波分解,简化了故障特征向量的提取。然后提出了一种基于最小二乘支持向量机的故障诊断模型,用二次损失函数取代支持向量机中的不敏感损失函数,将不等式约束条件变为等式约束,从而将二次规划问题转变为线性方程组的求解,用最小二乘法实现了支持向量机算法,并提出对核函数的σ参数进行动态选取,提高了诊断的准确率。仿真结果表明该模型具有较强的非线性处理和抗干扰能力。 In order to enhance fault diagnosis precision, the wavelet packet analysis and least squares support vector machine (LSSVM) are combined effectively. First the power spectrum of fault signals is decomposed by wavelet analysis, which predigests choosing method of fault eigenvectors. And then a fault diagnosis model based on LSSVM is presented. In the model, the non-sensitive loss function is replaced by quadratic loss function and the inequality constraints are replaced by equality constraints. Consequently, quadratic programming problem is simplified as the problem of solving linear equation groups, and the SVM algorithm is realized by least squares method. It is presented to choose a parameter of kernel function on dynamic, which enhances preciseness rate of diagnosis. The simulation results show the model has strong non-linear solution and anti-jamming ability.
出处 《计算机科学》 CSCD 北大核心 2007年第1期289-291,共3页 Computer Science
基金 中国博士后科学基金资助项目(编号2005038515)
关键词 故障诊断 最小二乘支持向量机 核函数 小波包分析 Fault diagnosis, Least squares support vector machine,Kernel function, Wavelet packet analysis
  • 相关文献

参考文献12

  • 1Cortes C,Vapnik V.Support-Vector Network.Machine Learning,1995,20:273~297
  • 2Hsu C W,Lin C J.A Comparison of Methods for Multiclass Support Vector Support Vector Machines.IEEE Trans on Neural Networks,2002,13(2):415~425
  • 3Chuah T C,Sharif B S,Hinton O R.Robust Adaptive SpreadSpectrum Receiver with Neural-Net Preprocessing in Non-Gaussian Noise.IEEE Transactions on Neural Networks,2001,12(3):546~558
  • 4Chen S,Samingan A K,Hanzo L.Support Vector Machine Multiuser Receiver for DS-CDMA Signals in Multipath Channels.IEEE Transactions on Neural Networks,2001,12(3):604~611
  • 5Sebald D J,Bucklew J A.Support Vector Machine Techniques for Nonlinear Equalization.IEEE Transactions on Signal Processing,2000,48(11):3217~3226
  • 6Engel Y,Mannor S,Meir R.The Kernel Recursive LeastSquares Algorithm.IEEE Trans on Signal Processing,2004,52(8):2275~2285
  • 7虞和济 陈长征 张省 周建南.基于神经网络的智能诊断[M].北京:冶金工业出版社,2002..
  • 8叶志锋,孙健国.基于概率神经网络的发动机故障诊断[J].航空学报,2002,23(2):155-157. 被引量:51
  • 9李冬辉,刘浩.基于概率神经网络的故障诊断方法及应用[J].系统工程与电子技术,2004,26(7):997-999. 被引量:38
  • 10Lendasse A,Simon G,Wertz V,et al.Fast Bootstrap for LeastSquare Support Vector Machines.Proceedings of European Symposium on Artificial Neural Networks.Bruges,Belgium,April2004.525~530

二级参考文献10

  • 1[1]Doel D L. Temper-a gas-path analysis tool for commercial jet engines[J]. Transactions of the ASME J of Engineering for Gas Turbines and Power, 1994, 116(1):82-89.
  • 2[2]Barwell M J. COMPASS:ground based engine monitoring program for general application[R]. SAE Technical Paper No.871734, 1987.
  • 3[3]Eustace R, Merrington G. Fault diagnosis of fleet engines using neural networks[A]. ISABE 95-7085[C], 1995:926-936.
  • 4[4]Specht D F. Probabilistics neural networks[J]. Neural networks. 1990 (3):109-118.
  • 5[5]Volponi A J, Pold H D, Ganguli R, et al. The use ofKalman filter and neural networks methodologies in gas turbine performance diagnostics: a comparative study[A]. In: Proceedings of ASME TURBO EXPO 2000[C], Munich, Germany, 2000.
  • 6[6]LU Pong-Jeu, Zhang Ming-Chuan, Hsu Tzu-Cheng, et al,An evaluation of engine faults diagnostics using artificial neural networks[A]. In: Proceedings of ASME TURBO EXPO 2000[C], Munich, Germany, 2000.
  • 7章毓晋.图像分割[M].北京:科学出版社,2001..
  • 8Babacan SD, Sayood K. Predictive Image Compression Using Conditional Averages[C]. IEEE Proceedings Data Compression Conference, 2004. 524-524.
  • 9Simard PY, Malvar HS, Rinker J, et d. A Foreground/Dackground Separation Algorithm for Image Compression[C], IEEE Proceedings of Data Compression Conference, 2004. 498-507.
  • 10李宏贵,李兴国.灰度图像的子块压缩方法[J].红外与激光工程,2002,31(5):390-394. 被引量:2

共引文献99

同被引文献55

引证文献8

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部